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CRITICAL POINTS AND
WARPED PRODUCT METRICS

SEUNGSU HWANG AND JEONGWOOK CHANG

ABSTRACT. It has been conjectured that, on a compact orientable
manifold M, a critical point of the total scalar curvature functional
restricted the space of unit volume metrics of constant scalar cur-
vature is Einstein. In this paper we show that if a manifold is
a 3-dimensional warped product, then (M, g) cannot be a critical
point unless it is isometric to the standard sphere.

1. Introduction

Let M be an n-dimensional compact orientable manifold and let M
denote the space of smooth Riemannian metrics on M. Also let s’g
denote the linearization of the scalar curvature sy on (M, g) given by

sp(h) = =Agtrh + 0585k — g(h, Ticy)

where A, is the Laplacian, § is the divergence operator, ric, is the
Ricci curvature tensor of g, and §* is the formal adjoint of §. Then the
L?—adjoint operator s, of s, is given by

(1.1) sy (f) = —gQgf + Dydf — frg.

On the other hand, due to the resolution of Yamabe problem, it is
known that within each conformal class there exists a metric of constant
scalar curvature. Thus we may consider the space C of metrics of con-
stant scalar curvature on M. Let C; denote corresponding space of unit
volume metrics. Then the total scalar curvature functional S : 3 — R
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given by
S(g) = / s¢dvg
MTL

has the following Euler-Lagrange equation

(1.2) zg =55 (f)
for a critical point g, where 2, is the traceless Ricci tensor, f is a function
on M™ with vanishing mean value, and Ayf = ~=2%f. It has been

conjectured that any smooth Riemannian n-dimensional manifold (M, g)
satisfying (1.2) for some smooth function f is Einstein, or f € Ker s’g*
(Conjecture A). If the metric g is Einstein, it turns out that (M, g) is
isometric to a standard sphere S™ [7]. For the partial answers to this
conjecture, see (3], [6]. One of them states that if g is conformally flat,
that (M, g) is isometric to a standard sphere [6].

The motivation of this paper is to find the validity of this conjec-
ture. In order to do so, we prove a rigidity theorem. In [2], Fisher and
Marsden conjectured that if f € Ker s;* for some smooth function f,
then such a Riemannian manifold (M, g) is isometric to the standard
sphere (F-M conjecture, thereafter). F-M conjecture is closely related
to our Conjecture A (see, for example, [4]). It turns out that there are
counter-examples of F-M conjecture. However, all the known counter-
examples of this conjecture are warped products. Therefore, it is a
natural question whether a warped product can be a counter-example
of our Conjecture A. In this paper we prove that no warped products
can satisfy the equation (1.2) in dimension 3 unless it is isometric to a
standard sphere. In a forthcoming paper, using the technique developed
in this paper, we will show that no warped product metrics can be a
solution of (1.2) in higher dimensions.

Now our main result can be stated as follows:

THEOREM 1.1. Let (M, g) be a 3-dimensional warped product given
by B xy2 F, C1 the space of unit volume metrics of constant scalar
curvature, and S, be the total scalar curvature functional restricted
C1. Then (M, g) cannot be a critical point of Si¢, unless it is isometric
to the standard sphere.

2. Proof of Theorem 1

This section is devoted to the proof of Theorem 1. Let (M,g) is a
warped product given by (B, §) xy2 (F,§) with g = § + ¥2g, ¥ > 0.
In our further considerations in the present paper, we assume that g is
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a solution to (1.2) on a 3-dimensional compact manifold M. We also
assume that the scalar curvature sq is positive, otherwise the solution of
Af = —3%f is trivial, which implies that g is Einstein by (1.2). We now
consider the following two cases, and prove that our assumption leads
to a desired conclusion in both cases.

CASE 1. dim B =1 and dim F = 2.

In this case, g = dt? + 12§, where 1 = (t). In virtue of the formula
for the warped product, we have

(2.1) mxX)=-ﬁf
(2.2) r(X,U) = 0

/" 12
(2.3) rU,V) = #UV)+ WVWii %ﬂ

for any horizontal vector X and any vertical vectors U, V.
Now we are going to prove that (M, g) is isometric to a 3-sphere. It
consists of the following three contentions.

CONTENTION 1. F is isometric to the standard sphere S2.

Proof. In virtue of (2.1), (2.2) and (2.3), the intrinsic scalar curvature
§ of F is given by
(2.4) § = sy? + 4"y + 20"
where we used the fact that 21'2:1 F(yU;, ¥U;) = § since §(U;, U;) = Elg
Since § is independent of ¢, § has to be a constant in virtue of (2.4).
It implies that F is of constant curvature of dimension 2. Since M is

assumed to be orientable, F' should be isometric to a standard sphere of
dimension 2. n

From the above proof, we examine a property of f in Case 1. The
equation (1.2) can be rewritten as

(2.5) u+n%_D#+9f
Therefore, putting the following
(Dxd,U) = (Dx (). U) = £ (@) V)

into the equation (1.2), we have, for any vertmal U,

= YuanT v,
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Then it may be shown that either f = f(t), or ¥ is constant. The proof
of this fact will be shown in a forthcoming paper. The following lemma
shows that f should be a function of ¢ alone in Case 1. We remark that
we do not use this fact to prove our Theorem.

LEMMA 2.1. % cannot be constant.

Proof. Suppose that v is constant, say ¢ = 1. Then g is a standard
product metric. In virtue of (2.4), we have § = s, which implies that F'
is of positive constant curvature metric. Therefore F is isometric to S 2
since M is orientable by assumption. Thus (M, g) = (S! x S?%, g), which
is conformally flat. It follows from [6] that g should be Einstein if g is
conformally flat, contradicting the fact that there is no Einstein metric
on S x 2. Therefore g cannot be a solution of (1.2). O

CONTENTION 2. B cannot be St

Proof. Assume that B = S1. Then ¢(t) cannot vanish at any t € S*.
In virtue of Contention 1, we have M = S* x,, S? with the metric g
given by g = dt? + 9(t)?go. This metric is conformally flat, since go
is of constant curvature, cf. [5]. It follows from [6] and [7] that, if
g is a solution of (1.2) and conformally flat, g should be isometric to a
standard sphere S3, which is a contradiction since there is no 1 satisfying
53 = Sl Xy Sz. O

CONTENTION 3. M is isometric to S3.

Proof. In virtue of contention 1 and 2, we have M should be of form
[a,b] xy S2. In order for M to be a complete manifold, we have

(2.6) P(a) = p(b) =0.
Also, in order for M to be smooth, we have (cf. [1], p.269)
2
(2.7) ¥(a) = ~w/(B) = 2.
Note that the equation (2.4) can be rewritten as the following
YL RN
(2.8) _4(¢ st 2¢).

First, for a solution 1 of (2.8), we observe that ¥”(a) = 0, since we have
1.
vy = (- syt - 207
w/wl!+2w¢/// —_ _§¢w/.
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Note that ¥ (t) = k1 cos ke(2t—b—a) with ky = \/g and kg = @—_’f—a)\/%
is a solution of (2.8) with the initial condition (2.6) and (2.7). Now we
claim that the above vy is the unique solution of (2.8) with the condition
(2.6) and (2.7). Let ¢ be another solution of (2.8) satisfying the same
initial conditions, and let F = % Our claim follows if we show that

F=1,1ie, ¥ =1p. It is easy to see that F' is well-defined on [a, b] and
F(a) = 1. Since ¢ = 9 F is a solution of (2.8), we also have

1 1
13 = 1) + 3o FF + y§(FF" + - F%) =0,

where we used the fact that Yoy = %(§ — s — 292). Thus we have a
differential equation

1 /1 1
"o__ a4 2 / / T ah2 2
29 F=o (3 = 1) + 36aut FF' + SudF?),
with the initial conditions
(2.10) F(a)=1, F'(a)=0,

where the second condition follows from the fact that ¥ = y{F +
2¢4F" + Yo F" and ¢"(a) = 0 as mentioned above. Let

1
)
where £ is obtained just by the substitution F and F’ with y; and y
respectively in (2.9). In order to prove the uniqueness of solution (2.9)
with initial conditions (2.10), from the ODE theory, it is enough to
show that £(¢,y1,y2) is continuous with respect to ¢ and Lipschitz with
respect to y; and y; in the rectangle R = [a, b] X [r, R1] X [— Ra, R3], for all
0 <r <1< R;and Ry > 0. First, it is easy to show that £ is continuous
for ¢ by letting £(0,y1(0),32(0)) = 0. Secondly, since ¢ is smooth with
respect to y1, y2 in R, £ is Lipschitz in the sense that for some M > 0,
€@, 11(2), 92(t)) — £(¢, 71(8), G2())] < M(|jy2(t) — 71(8)| + |y2(t) — G2(t)])-
So F' =1 is the unique solution of (2.9), proving our claim. Therefore,
the given warped product metric g should be isometric to a standard

sphere. As noting that f is a function of ¢ alone, it is also easy to see
that f(t) = ksin /3t O

1. 1
£t y1,102) = — <13(y12 — 1) + 3vovpyrye + §w§y22)7

CASE 2. dim B =2 and dim F = 1.

In this case, we will show that there is no solution metrics of (1.2).
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Let {X,Y,U} be an orthonormal vectors, where X,Y" are horizontal
vectors and U is a vertical vector. By the formula of warped product
manifold, we have

(2.11) r(X,Y) = mﬁﬁ—%ﬁwdjj
(2.12) r(X,U) = 0
(2.13) r(U,U) = —A—Ji

where X ,}V" are the projections of X,Y respectively. Also D is the
induced connection and A is the induced Laplacian on B.
In the virtue of the property of f, we have

(2.14) Af = (Dxdf, X) + (Dydf,Y) + (Dudf,U) = = f.
And by definition of Af, we have
(2.15) Af = Af = (Dydf,U) = == f = (Dydf,U).

Thus by applying X,Y,U in the equation (2.5) and using (2.11),
(2.13), we have

(2:16) (L+ £)(7(%0, X0) — S DAB(X X) - 3) = (D, Xi) + 31
Aw s, s
2.17) (14 (F ~3) = (Dudf. V) + 5,

where X7 = X and Xy =Y.

In virtue of the above observations, we get the following proposition,
which completes the proof that there is no solution metrics of (1.2).

PROPOSITION 2.2. B xy2 F' cannot be a critical point of Sic,, when
dim B =2 and dim F =1.

Proof. Suppose that B x 2 F is a solution of (1.2). Then it satisfies
all the above equations. Substituting (2.14) into (2.17), we have
Ad) s < ]
2.18 1 SY LS Af4 iy
(218) 1+ N +3) =Ar+37

or

(2.19) (1+ )Ry + %w — AS.
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Now taking the integration over B we have

(2.20) [ 18wy [w=[ vir= ] iho

which implies that, being s positive,

(2.21) /B P =0.

Since v is smooth and ¥ > 0, (2.21) tells that ¢ = 0. This is a
contradiction. |
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