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ON THE SYNGE’S THEOREM FOR
COMPLEX FINSLER MANIFOLDS

DAE YEON WON

ABSTRACT. In [13], we developed a theory of complex Finsler man-
ifolds to investigate the global geometry of complex Finsler man-
ifolds. There we proved a version of Bonnet-Myers’ theorem for
complex Finsler manifolds with a certain condition on the Finsler
metric which is a generalization of the Kéahler condition for the
Hermitian metric.

In this paper, we show that if the holomorphic sectional cur-
vature of M is > ¢? > 0, then M is simply connected. This is a
generalization of the Synge’s theorem in the Riemannian geometry
and the Tsukamoto’s theorem for Kéhler manifolds.

The main point of the proof lies in how we can circumvent the
convex neighborhood theorem in the Riemannian geometry. A sec-
ond variation formula of arc length for complex Finsler manifolds
is also derived.

1. Introduction

One of the main themes in global differential geometry is probably
that the curvature controls the topology of the underlying manifold.
In this regard, we have Bonnet-Myers’ theorem, Synge’s theorem and
Cartan-Hadamard’s theorem to name a few. In particular, Synge’s
theorem in the Riemannian geometry gives simply connectedness for
the manifold with curvature bounded below by some positive constant.
Later in [12], Y. Tsukamoto proved a version for Kéhler manifolds under
a weaker assumption. He only assumed that the holomorphic sectional
curvature is bounded below by some positive constant. Here, we gener-
alize this theorem to the complex Finsler manifolds. The main difficulty
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is in that we can not use the convex neighborhood theorem in the Rie-
mannian geometry. And so the proof of Proposition 3.3 on the existence
of a certain closed geodesic is rather long but is of importance in itself.
The proof of the main theorem also depends on our previous work [13].

In [6], S. Kobayashi paved a road to a modern approach to the study
of holomorphic vector bundles with complex Finsler structures. His main
observation lies in the following diagram:

p*E——E—»E

di E

PE — M
p

He considered a pull-back bundle of the holomorphic vector bundle = :
E — M by the projection p : PE — M . Then the Finsler structure
on ' produces a Hermitian structure on the induced bundle 7 : p*FE —
PE . And hence we can apply well-known techniques in the Hermitian
geometry. In this paper, we essentially follow his idea for the case £ =
TM, the tangent bundle.

In §2, we set up the notations. And we recall some of definitions in
Finsler geometry. More thorough treatments on the Finsler geometry
can be found in the books [1], [2], [9]. In §3, we briefly go over a general
theory of geodesics in metric spaces. A complex Finsler metric gives rise
to an inner distance function on the underlying manifold. Generalized
Hope-Rinow theorem(Lemma 3.1) applied to the complex Finsler mani-
fold with this inner distance produces Proposition 3.2. The existence of
minimizing geodesics joining any two points is the starting point of the
proof of Proposition 3.3. For the proof of Proposition 3.4, we cook up a
nice C-variation and we derive a second variation formula of arc length
for Finsler metrics.

2. Preliminaries

Let M be an n-dimensional complex manifold with a local coor-
dinate system (z%), ¢ = 1,2,---,n, where 2! = z! + /=1y so that
(%, 9)), i = 1,2,--- ,n, is a local coordinate system of the underlying
real manifold. We will use (z¢,¢?), i = 1,2,+--,n as a local coordinate
system for the holomorphic tangent bundle T%°M. Let J be the natural
complex structure of M . Hereafter we identify T,M with Tpl’OM by the

identification ¢ : T,M — T,}’OM defined by ¢(v) = %(v —v=1Jv).
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To a complex Finsler metric F on M , we can associate a real Finsler
metric F° on M via the identification map ¢ above. But the real Finsler
metric F° is not necessarily strongly convex, i.e., real Hessian of (F°)? is
not positive definite in general. As in [1], we assume that F° is strongly
convex. This Finsler structure is enough to define a length of a curve
and in turn a notion of geodesics. A curve ¢ : [0,l] = M in M is a
geodesic for a complex Finsler metric F' if it is a critical point of Lg,
where

l
(2.1) Lr(c) = /0 Fle(t), é(2)) dt

Since F° is strongly convex, well-known theorems on the geodesics in
real Finsler geometry are readily applicable. On this regard, see [1] and
[13].

On the Hermitian vector bundle # : p*T M — PTHCM , there ex-
ists a unique connection D of type (1,0) which is compatible with the
Hermitian structure. For the existence of such a connection, which is
called the Chern connection, see [4, p. 73]. Then with respect to a local
frame {%, e ,6;2“} , the curvature form 2,7 of the Chern connection
D is defined by

Qij = Rl.jkldzk A dz' + mixed terms in dz* and d{l ,

where
; 5 092G, 7 ~ab OG o7, 0G5,
J _— _yh ih jh vab ah ib )
Boa=—C"gmpa T O 55 Gk
By lowering index, we have

8*Gy; n zn: ab0Ga; 0G5

Ror= —— 4 .
ikl 92k97! 9zt 9zk

a,

Then for a nonzero tangent vector ¢ at z € M, the holomorphic
sectional curvature H of ( at z € M of a complex Finsler manifold
(M, F) is defined by

> Rga¢'T¢id.

1
3,5k, 1=1

(2,€)

As a generalization of the Kahler condition in the complex differ-
ential geometry, a complex Finsler metric F' is called pseudo-Kéhler if

%’E(z,() = 68Gz'§j(z,g) for all (z,¢) € PT1OM .

The main goal of this paper is to prove the following:
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THEOREM 2.1. Let (M, F') be a complete pseudo-Kéahler Finsler man-
ifold with strongly convex F° . If the holomorphic sectional curvature of
M is>c®>0, then M is simply connected.

The Riemannian version of this theorem is due to Synge. See, eg., [3,
pp.98-99]. Its Kéhler version is proved by Tsukamoto [12].

3. Proof of the main theorem

We begin with a general theory of metric spaces with inner metrics.
Let (X,d) be a metric space. The distance function d on X defines a
length function L(c) of a curve ¢: [0,{] — X in X by

k
(3.1) L(c) =sup Y _ d(c(ti1),c(t:)),
i=1
where the supremum is taken over all partitions 0 = ) < t; < -+ <

tx = [ of the interval [0,[]. To this length function L, we associate a new
distance function d* : X x X — R by

(3.2) d'(p,q) =inf{L(c) | c¢: curve joining p and ¢}, for p,qg e X .
If the metric d satisfies d* = d, we call this metric d an inner metric and
the metric space (X, d) a length space.

Now go back to the Finsler manifold (M, F'). The length function
Lr(c) of (2.1) gives rise to a distance function dp : M x M — R defined
by

dr(p,q) =inf{Lr(c) | c¢: curve joining p and g}, for p,g € M.

Indeed, this dr is a metric and hence (M, dr) is a metric space. Now
this distance function dp defines another length function L(c) of a curve
cin M as in (3.1). Then to this length function L, we associate a new
distance function dp’ : M x M — R as in (3.2). A distance function
defined via (2.1) is automatically an inner metric, i.e., dr' = dp. And
the metric space (M, dF) is a length space.

For a length space, we have a following generalization of the theorem
of Hopf-Rinow.

LEMMA 3.1. Let (M,d) be a locally compact complete length space.
Then any two points can be joined by a minimizing geodesic.

For its proof, we refer the reader to the books [5], [7] and [10]. This
lemma applied to a complex Finsler manifold (M, F') is tantamount to
the following.
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PROPOSITION 3.2. Let (M, F) be a complex Finsler manifold with
strongly convex F°. Then any two points can be joined by a minimizing
geodesic.

With the existence of a minimizing geodesic joining any two points,
we are ready to establish the following propositions which are essential
to the proof of Theorem 2.1.

PRrROPOSITION 3.3. Let (M, F) be a compact complex Finsler mani-
fold. Every nontrivial free homotopy class of closed curves of M contains
a closed geodesic which is shortest in that class.

Proof. Let M be the universal covering space of M and 7 : M— M
be the projection. And let D be the set of all covering transformations.
The complex Finsler metric on M can be lifted to a complex Finsler
metric on M by 7. Let I' be a nontrivial free homotopy class of closed
curves in M. To I' associate a conjugacy class in D in the following way.
Let ¢: [0,1] — M be a closed curve in I, let ¢: [0,1] — M be its lifting,
starting at some q € 7~1(c(0)). Then there exists a unique § € D such
that

(3.3) ¢(1) = 8(g) = 6(¢(0)) -
Note that 6 # 0 because ¢ is not homotopic to a constant.

Now consider the conjugacy class {podod™ | ¢ € D} of § € D.
This class does not depend on the choices of ¢ € 7~1(¢(0)) and ¢ € T.
In fact, for ¢ € 771(c(0)), there exists ¢ € D such that ¢ = ¢(g) and
the lifting ¢ of ¢ starting ¢ = ¢(q) is ¢ 0 & So

(1) = #(&(1)) = #(8(q)) = po 0™ (¢(q)) = P08 0 ¢~ ((0)).

Let ¢; : [0,1] — M be another closed curve in I'. Then there exists
a homotopy H : [0,1] x [0,1] — M satisfying H(¢,0) = c(t), H(¢,1) =
c1(t) and H(0,s) = H(1,s).

Let H : [0,1] x [0,1] — M be a lifting of H. Then H(l,s) =
8(s)(H(0,s)) for some 8(s) and all §(s) must be the same & by con-
tinuity of s — 6(s). Thus both ¢ and ¢; determine the same ¢ and hence
the same conjugacy class.

Next we define hs : M — R by hs(q) = inf{d(q, qﬁoéggb_l(q)) 1 ¢ € D}.
Since M is compact, we have a compact set K C M with n(K) = M

and consequently D(K) = M. Thus from the fact that hs is invariant
under the action of D, the minimum of hs on K is the minimum on
all of M. Say that hs takes its minimum at ¢, € M and that hs(g,) =
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d(go, do 0 6 0 ¢71(g,)). Note that such ¢, exists since D acts discretely.
Let v be a minimizing geodesic in M from go 10 ¢ 08 0 ¢, 1(g,). The
existence of such a minimizing geodesic follows from the completeness
of M and M by Proposition 3.2.

We will show that the closed curve m o~y is in I'. Consider the lifting
¢ of ¢ starting at ¢,(q), i.e., &(t) = ¢, 0 &(t), where & is the lift of ¢ with
¢(0) = q. Then by (3.3),

(1) = ¢o0&(1) = ¢o 08 0 &(0) = o0 5 0 ¢, ' (¢(0)).

Let a: [0,1] — M be a curve from 7(0) to ¢(0). Then ¢,060¢; oq
is a curve from (1) to ¢(1). So we can define a continuous map H :
9([0,1] x [0,1]) — M such that

H(t: O) = V(t) ’ H(t’ 1) = é(t) )

H(0~ S) = a(s) ) H(I,S) =¢,0d0 ¢¢;1(a(5)) .
Since M A1§ simply connected, we can extend this to a map H : [0,1] x
[0,1] - M. Then mo H : [0,1] x [0,1] — M is a homotopy of m o~y and
c.Somo~yisin .

We know that 7o~ is smooth possibly except for mov(0) = moy(1) =
7(q,) since v is a geodesic. To show that 7 o 7y is smooth at 7(g,), let

B :[0,1] = M be such that
B(t) = y(t+1/2), ift <1/2;
T\ doobogTi(y(t—1/2), ift>1/2.
Then

Li(B) = Lg(Blo,1/2) + LeBluye,)
Liz(v 1/21])+LF(¢005°¢0 °7lj0,1/2))
Le(ny2a) + Le(Vlo,1/2)

= Lz(v),

i

since the covering transformation ¢, o § o ¢, ! preserves the length of a
curve.

On the other hand,

hs(B(0)) > hs(go) = Lp(v) = Lp(B)
B(1)) = d(B(0), ¢o 0 6 0 ¢, (B(0)))
).
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Thus Lz(8) = d(B8(0), (1)) and hence 3 is a minimizing geodesic. In
particular, § is smooth at t = 1/2 and so is 7o 3 and so 7 oy is smooth
at m(go).

Finally, we will prove that 7 o 7 is of minimum length in I". Let ¢;
be any curve in I' and ¢ be any lifting, starting at some point ¢y, then
é1(1) =+ od o I(q) for some ¢ € D. Consequently,

Lp(c1) = L(é1) > d(qu, 0809 (1))
> hs(q1)
> hs(go) = Lp(v) = Lrp(mon).

Since ¢; is arbitrary in I', w o v is of minimum length in T'. O

Riemannian version of this theorem is due to E. Cartan. See, e.g.,
[11, pp.355-358]. Actually, the above proof is similar to the one in
Riemannian geometry except for the smoothness of 7 o «. Since we do
not have convex neighborhood theorem in our case, we needed other
trick.

PROPOSITION 3.4. If a pseudo-Kihler Finsler manifold (M, F') has
positive holomorphic sectional curvature, then there does not exist a
closed geodesic of minimum type.

Proof. Let ¢, : [0,]] — M be a closed geodesic in M. Then as in
Proposition 3.1 of [13], we have a C!-variation ¢ : [0,1] X (—¢,€) — M of
¢o such that

(1) {Oc/0t,0c/ds} are linearly independent for all ¢ € [0,l], s €

('—6’ E)a
(2) 0c/0s(t,s)|s=0 = JT(t).

Note that the restriction of ¢ to [0,1'] x (—¢, €) is one-to-one if I’ < [ and
that 9c/0s(0,s) = dc/ds(l,s). So we can choose a continuous nowhere
vanishing vector field X on some open set U containing {c(t,s) : t €
[0,1],s € (—¢,€)} such that X agrees with dc/8t(t, s) i.e.,

X(z) =0c/0t(t,s) if z=c(t,s).

On U, we have a Kahler metric defined by g;;(2) = Gi3(2, X (2)).

We will use the induced Kéhler metric on U to find the second varia-
tion formula of arc length. Let (, ) denote the real part of the induced
Kahler metric and V its Levi-Civita connection. We observe that, by
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the definition of X,

{
Li(cs) = /0 Fles(t), (1)) dt
!
- /0 Flea(t), X (cs(t))) dt

_ /l<T,T> dt
0
= LU(CS)

and by the second variation formula of length in Riemannian metric (, )
of U,

L
2 ds?
= (T, Vs5)|

L
s=0 F (CS)
l

t=0
1
—~ / (VrS,VS) + (S, R(T, S)T) + (T(T, S))* St
0 5=

Then the boundary term is zero since each ¢, is closed.

And V7S =VpJT = J(V7T) = 0 at s = 0 because ¢, is a geodesic
in U with respect to (, ) and g is a Kéhler metric on U. Furthermore,
(T,S) =(T,JT) =0at s=0.

Hence
1 d2 l
—— L =— R(T, ST dt
5203 Lrle) == [ SR@ST)|
1
__ / (JT, R(T, JT)T) dt
0
< 0.
Therefore, ¢, cannot be of minimum type. O

Proof of Theorem 2.1. First note that M is compact by Theorem 2.1
in [13].

Suppose that M is not simply connected. Then there exists a non-
trivial free homotopy class I' of closed curves of M . By Proposition 3.3,
I" contains a closed geodesic which is shortest in that class and hence is
of minimum type.

On the other hand, by Proposition 3.4, M does not contain a closed
geodesic of minimum type. This is a contradiction.

Therefore M is simply connected. O
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