ON SOME FINITE p-GROUPS

SEON OK KIM

ABSTRACT. The purpose of this paper is to investigate the order of a finite p-group and determine the structure of such group.

1. Introduction

Wiegold proved that if G is a group with central factor group G/Z(G) of order p^m , then G' is a p-group of order at most $p^{\frac{m(m-1)}{2}}$ (cf. [2]). In this paper we determine the structure of a p-group G such that $|G/Z(G)| = p^m$ and $|G'| = p^{\frac{m(m-1)}{2}-1}$.

The notation in the paper is standard. The center of a group G is denoted by Z(G), and the subgroups $Z_2(G)$ and $Z_3(G)$ of G are given by $Z(G/Z(G)) = Z_2(G)/Z(G)$ and $Z(G/Z_2(G)) = Z_3(G)/Z_2(G)$, respectively. And the commutator subgroup of a group G is denoted by G'. Thus

$$G' = \langle [x, y] | x, y \in G \rangle,$$

where $[x, y] = x^{-1}y^{-1}xy$.

We begin with a lemma.

LEMMA 1. Let p be a prime and let G be an arbitrary group such that G/Z(G) is a finite p-group of order p^n . Then G' is a finite p-group and

$$|G'| \le p^{\frac{n(n-1)}{2}}.$$

Proof. The proof can be found in [2, Theorem 2.1]. \Box

By the above lemma, we have the following (see [1], Lemma 5).

LEMMA 2. Let G be a finite p-group with $|G/Z(G)| = p^m$. Then there exists an integer $s \ge 0$ such that

$$|G'| = p^{\frac{m(m-1)}{2} - s}$$

Received July 11, 2002.

²⁰⁰⁰ Mathematics Subject Classification: 20C25.

Key words and phrases: p-group.

and

$$|(G/Z(G))'| \le p^{1+s}.$$

Moreover, if $|(G/Z(G))'| = p^{1+s}$, then $Z_2(G)/Z(G)$ has exponent p.

DEFINITION 1. A finite abelian p-group is called an elementary abelian p-group if

$$G \cong C_p \times C_p \times \cdots \times C_p$$
,

where C_p denotes the cyclic group of order p.

DEFINITION 2. Let G be a finite p-group. Then G is said to be extra-special if the following three conditions hold.

- (1) G' = Z(G),
- (2) |G'| = p, and
- (3) G/G' is an elementary abelian p-group.

LEMMA 3. Let G be a finite p-group. Then G is extra-special if and only if G' = Z(G) and |G'| = p.

Proof. If G is extra-special, then G' = Z(G) and |G'| = p by Definition 2.

Suppose that G be a finite p-group such that G' = Z(G) and |G'| = p. Since G' = Z(G), we have [g, xy] = [g, x][g, y] for all $g, x, y \in G$. And it follows from |G'| = p that

$$[g, x^p] = [g, x]^p = 1$$

for all $g, x \in G$. Hence $x^p \in Z(G) = G'$ for all $x \in G$, and so G/G' is an elementary abelian p-group. Thus G is extra-special

Theorem 1. Let G be a finite p-group with $|G/Z(G)| = p^m$. If

$$|G'| = p^{\frac{m(m-1)}{2}}$$

then either G/Z(G) is elementary abelian or G/Z(G) is extra-special.

Proof. The proof can be found in [1, Theorem 6].

We can prove the following lemma by easy calculations.

LEMMA 4. Let G be a finite group. Then the following holds.

- 1. If x, y, z are elements of G, then
 - (a) $[xy, z] = [x, z]^y[y, z] = [x, z][[x, z], y][y, z].$
 - (b) $[x, yz] = [x, z][x, y]^z = [x, z][x, y][[x, y], z].$
- 2. Suppose that $G' \subseteq Z(G)$. Then, for any elements x, y, z of G, we have
 - (a) [xy, z] = [x, z][y, z].

- (b) [x, yz] = [x, z][x, y].
- (c) $[x^i, y^j] = [x, y]^{ij}$ for all $i, j \ge 0$.
- (d) $(yx)^i = [x, y]^k y^i x^i$ for all $i \ge 1$, where $k = \frac{i(i-1)}{2}$.

2. Main theorem

In this section we prove our main theorem.

THEOREM 2. Let p be a prime and let G be a finite p-group with $|G/Z(G)| = p^m$. If $|G'| = p^{\frac{m(m-1)}{2}-1}$, where $m \geq 3$, then one of the following holds.

- 1. $G = Z_2(G)$, and G/Z(G) is an elementary abelian p-group.
- 2. $G = Z_3(G)$, G/Z(G) is an extra special group and $|Z_2(G)/Z(G)| = p$.
- 3. $G = Z_3(G)$, Z(G/Z(G)) is elementary abelian and $|Z_2(G)/Z(G)| = p^2$.
- 4. $G/Z_2(G)$ is of order at most p^{m-3} , and $Z_2(G)/Z(G)$ has exponent p.

Proof. By the assumption and Lemma 2, we have $|G'| = p^{\frac{m(m-1)}{2}-1}$ and

$$|(G/Z(G))'| \le p^2.$$

First, we consider the case when

$$|(G/Z(G))'| = 1.$$

Then G/Z(G) is an abelian group and so $G=Z_2(G)$ and $G'\subseteq Z(G)$.

Suppose that G/Z(G) is not elementary abelian. Then there exists an element $z_0 \in G - Z(G)$ such that $z_0^p \notin Z(G)$. Since $G' \subseteq Z(G)$, it follows from Lemma 4 that the map

$$\varphi: G \to [G, z_0], \ \varphi(x) = [x, z_0]$$

is an epimorphism with $\ker(\varphi) = C_G(z_0)$, and so $G/C_G(z_0) \cong [G, z_0]$.

Since $Z(G) \subset \langle z_0, Z(G) \rangle \subseteq C_G(z_0)$, we have $|G/C_G(z_0)| < |G/Z(G)| = p^m$ and so $|G/C_G(z_0)| \le p^{m-1}$. And $[G, z_0] \subseteq G' \subseteq Z(G)$ and so $[G, z_0]$ is a normal subgroup of G. Put $|G/[G, z_0] : Z(G/[G, z_0])| = p^b$. Since $z_0^p \notin Z(G)$, we have $|[G, z_0]| \le m-2$ and $b \le m-2$. Because $[G, z_0] \subseteq G'$, we get that $(G/[G, z_0])' = G'/[G, z_0]$ and so |G'| = 1

 $|G'/[G,z_0]|$ | $|[G,z_0]|$. It follows from Lemma 1 that

$$\log_p |G'| \le \frac{b(b-1)}{2} + (m-2)$$

$$\le \frac{(m-2)(m-3)}{2} + (m-2)$$

which forces $m \leq 2$. But this is not the case.

Therefore G/Z(G) is an elementary abelian p-group with $G=Z_2(G)$ and (1) holds.

Now, we consider the case when

$$|(G/Z(G))'| = p.$$

Then (G/Z(G))' is a normal subgroup of a finite p-group G/Z(G). Hence, by the property of a finite p-group, we have

$$(G/Z(G))' \cap Z(G/Z(G))$$

is not trivial. Since |(G/Z(G))'| = p, it follows that $(G/Z(G))' \subseteq Z((G/Z(G)))$ and $|Z(G/Z(G))| \ge p$.

If |Z(G/Z(G))| = p, then we obtain $(G/Z(G))' = Z(G/Z(G)) = Z_2(G)/Z(G)$, because $(G/Z(G))' \subseteq Z((G/Z(G))$. It implies that G/Z(G) is an extra special group by Lemma 3 and (2) holds.

If $|Z(G/Z(G))| = p^2$, then Z(G/Z(G)) is either cyclic or elementary abelian. Suppose that Z(G/Z(G)) is a cyclic of order p^2 and let $Z(G/Z(G)) = \langle aZ(G) \rangle$. Let a be a fixed element of $Z_2(G) - Z(G)$ and let $\Phi(x) = [a,x]$ for all $x \in G$. Because [a,x]Z(G) = [aZ(G),xZ(G)] = Z(G) for all $xZ(G) \in G/Z(G)$, we see that $[a,x] \in Z(G)$. It follows that $\Phi(xy) = [a,xy] = [a,y][a,x]^x = [a,y][a,x] = [a,x][a,y] = \Phi(x)\Phi(y)$ and so Φ is a homomorphism from G into [a,G]. We obtain $\ker(\Phi) = C_G(a) \supset Z(G)$. Put $M = \operatorname{im}\Phi$ and $|M| = p^t$. Then $M \cong G/C_G(a)$. Since $\langle a^pZ(G)\rangle$ is cyclic of order p and $a^p \notin Z(G)$, we get that $t \leq m-2$. Put $|G/M:Z(G/M)| = p^b$. Since $a \notin Z(G)$ and $aM \in Z(G/M)$, we see that $\langle Z(G)/M,aM\rangle$ is a subgroup of Z(G/M). Because $a^p \notin Z(G)$, we have that $b \leq m-2$. Note that $M = \operatorname{im}\Phi \subseteq [a,G] \subseteq G'$ and so (G/M)' = G'/M. By Lemma 1, we have that

$$|G'| \le p^{\frac{b(b-1)}{2} + (m-2)}$$

 $\le p^{\frac{(m-2)(m-3)}{2} + (m-2)}$

and $p^m \leq p^2$. This is impossible. Therefore Z(G/Z(G)) is an elementary abelian p-group and (3) holds.

If $|Z(G/Z(G))| > p^2$, then we will show that $Z_2(G)/Z(G)$ has exponent p. Suppose that the exponent of $Z_2(G)/Z(G)$ is not equal p. Then there exists an element $b_0 \in Z_2(G) - Z(G)$ such that $b_0^p \notin Z(G)$. For $x \in G$ let $\Phi(x) = [b_0, x] = b_0^{-1} x^{-1} b_0 x$. Since $b_0 \in Z_2(G) - Z(G)$ and $[b_0, x] \in Z(G)$, we have that Φ is a homomorphism with $\ker(\Phi) = C_G(b_0)$. Put $M = \operatorname{im}\Phi$ and $|M| = p^t$. Since $b_0^p \notin Z(G)$, we have that $t \leq m - 2$. Put $|G/M: Z(G/M)| = p^b$. It follows from $b_0 M \in Z(G/M)$ and $b_0^p \notin Z(G)$ that $b \leq m - 2$. Since $M = [b_0, G] \subseteq G'$ and (G/M)' = G'/M, by Lemma 1 we get that $m \leq 2$ and this is a contradiction. Therefore $Z_2(G)/Z(G)$ has exponent p.

It is clear that $G/Z_2(G)$ is of order at most p^{m-3} . Since (G/Z(G))' is abelian, we have $(G/Z(G))'' = \{1\}$. It is that G/Z(G) is a finite p-group and so G/Z(G) is a nilpotent group. Therefore $Z_2(G/Z(G)) = G/Z(G)$ and we have $G = Z_3(G)$ and (4) holds.

Finally, we consider the case when

$$|(G/Z(G))'| = p^2.$$

Since (G/Z(G))' is abelian and G/Z(G) is a nilpotent group, we have $Z_2(G/Z(G)) = G/Z(G)$ and $(G/Z(G))' \subseteq Z(G/Z(G))$. We get that $G = Z_3(G)$ and $|Z(G/Z(G))| \ge p^2$.

If $|Z(G/Z(G))| = p^2$, then Z(G/Z(G)) is an abelian group of order p^2 . Since Z(G/Z(G)) has exponent p by Lemma 2, Z(G/Z(G)) is an elementary abelian group and (3) holds.

If $|Z(G/Z(G))| > p^2$, then Z(G/Z(G)) has exponent p by Lemma 2 and $G/Z_2(G)$ is of order at most p^{m-3} and (4) holds. Hence the assertion of Theorem 2 holds.

References

- [1] Ya. G. Berkovich, On the order of the commutator subgroup and the Schur multiplier of a finite p-group, J. Algebra. 144 (1991), no. 2, 269-272.
- [2] J. Wiegold, Multiplicators and groups with finite central factor groups, Math Z. 89 (1965), 345–347.

School of Information and Communication Engineering, Halla University, Kangwon 220-712, Korea

E-mail: suno_kim@ yahoo.co.kr