FSI-IDEALS AND FSC-IDEALS OF BCI-ALGEBRAS

YONG LIN LIU, SAN YANG LIU AND JIE MENG

ABSTRACT. The notions of FSI-ideals and FSC-ideals in BCI-algebras are introduced. The characterization properties of FSI-ideals and FSC-ideals are obtained. We investigate the relations between FSI-ideals (resp. FSC-ideals) and other fuzzy ideals, between FSI-ideals (resp. FSC-ideals) and BCI-algebras, and show that a fuzzy subset of a BCI-algebra is an FSI-ideal if and only if it is both an FSC-ideal and a fuzzy BCI-positive implicative ideal.

1. Introduction

BCK-algebras and BCI-algebras are two classes of logical algebras, which were initiated by K. Iseki [3, 4]. The notion of fuzzy sets, invented by L. A. Zadeh [20], has been applied to many field. In 1991, O. G. Xi [19] applied it to BCK-algebras. Since then fuzzy BCI/BCKalgebras have been extensively investigated by several researchers. For BCK-algebras, Y. B. Jun et al. [6, 9] introduced the notions of fuzzy positive implicative ideals and fuzzy commutative ideals, J. Meng et al. [14] introduced the notion of fuzzy implicative ideals. For BCIalgebras, Y. B. Jun et al. [5, 7, 8] introduced the notions of fuzzy g-ideals (i.e., fuzzy quasi-associative ideals), fuzzy p-ideals and fuzzy BCI-commutative ideals, the first author et al. [11, 12] introduced the notions of fuzzy BCI-positive implicative ideals, fuzzy BCI-implicative ideals and fuzzy a-ideals. The aim of this paper is to introduce the notions of FSI-ideals and FSC-ideals and discuss their properties. The characterization properties of FSI-ideals and FSC-ideals are obtained. We investigate the relations between FSI-ideals (resp. FSC-ideals) and other fuzzy ideals, between FSI-ideals (resp. FSC-ideals) and BCIalgebras, and show that a fuzzy subset of a BCI-algebra is an FSI-ideal

Received March 17, 2003.

²⁰⁰⁰ Mathematics Subject Classification: 03G25, 06F35, 94D05.

Key words and phrases: BCI-algebra, FSI-ideal, FSC-ideal, fuzzy ideal.

if and only if it is both an FSC-ideal and a fuzzy BCI-positive implicative ideal.

2. Preliminaries

By a BCI-algebra we mean a nonempty set X with a binary operation * and a constant 0 satisfying the following conditions:

- (1) ((x*y)*(x*z))*(z*y) = 0,
- (2) (x * (x * y)) * y = 0,
- (3) x * x = 0,
- (4) x * y = 0 and y * x = 0 imply x = y, for all $x, y, z \in X$.

In a BCI-algebra X, the partial ordering \leq is defined by $x \leq y$ if and only if x * y = 0. In a BCI-algebra X, the following hold:

- (5) (x * y) * z = (x * z) * y,
- (6) x * (x * (x * y)) = x * y,
- $(7) (x*z)*(y*z) \le x*y,$
- (8) 0 * (x * y) = (0 * x) * (0 * y),
- (9) x * 0 = x,
- (10) $x \le y$ implies $x * z \le y * z$ and $z * y \le z * x$.

We refer the reader to K. Iseki [3] for details of BCI-algebras. Throughout this paper X always means a BCI-algebra without any specification. A nonempty subset I of X is called an ideal of X if (I_1) : $0 \in I$, (I_2) : $x * y \in I$ and $y \in I$ imply $x \in I$. A nonempty subset I of X is called a positive implicative ideal (i.e., weakly positive implicative ideal) of X if it satisfies (I_1) and (I_3) : $((x*z)*z)*(y*z) \in I$ and $y \in I$ imply $x*z \in I$ [13]. A nonempty subset I of X is called a sub-implicative ideal of X if it satisfies (I_1) and (I_4) : $((x*(x*y))*(y*x))*z \in I$ and $z \in I$ imply $y*(y*x) \in I$ [10]. A nonempty subset I of X is called a sub-commutative ideal of X if it satisfies (I_1) and (I_5) : $(y*(y*(x*(x*y))))*z \in I$ and $z \in I$ imply $x*(x*y) \in I$ [10]. Let S be a set. A fuzzy subset of S is a function μ : $S \to [0,1]$. Let μ be a fuzzy subset of S. For $t \in [0,1]$, the set $\mu_t = \{s \in S \mid \mu(s) \geq t\}$ is called a level subset of μ [2].

DEFINITION 2.1 (Xi [19]). A fuzzy subset μ of X is said to be a fuzzy ideal of X if it satisfies

- $(F_1) \mu(0) \ge \mu(x)$ for all $x \in X$,
- $(F_2) \ \mu(x) \ge \min\{\mu(x*y), \mu(y)\} \text{ for all } x, y \in X.$

DEFINITION 2.2 (Liu and Meng [11]). A fuzzy subset μ of X is called a fuzzy BCI-positive implicative ideal of X if it satisfies (F_1) and

$$(F_3) \ \mu(x*z) \ge \min\{\mu(((x*z)*z)*(y*z)), \mu(y)\} \text{ for all } x, y, z \in X.$$

DEFINITION 2.3 (Jun and Meng [7]). A fuzzy subset μ of X is called a fuzzy p-ideal of X if it satisfies (F_1) and

$$(F_4) \mu(x) \ge \min\{\mu((x*z)*(y*z)), \mu(y)\} \text{ for all } x, y, z \in X.$$

THEOREM 2.4 (Jun et al. [6]). Every fuzzy ideal μ of X is order reversing.

THEOREM 2.5 (Jun and Meng [8]). Let μ be a fuzzy ideal of X. Then $x * y \le z$ implies $\mu(x) \ge \min\{\mu(y), \mu(z)\}$ for all $x, y, z \in X$.

3. FSI-ideals of BCI-algebras

DEFINITION 3.1. A fuzzy subset μ of X is called a fuzzy sub-implicative ideals (briefly, FSI-ideals) of X if it satisfies (F_1) and

$$(F_5) \mu(y * (y * x)) \ge \min\{\mu(((x * (x * y)) * (y * x)) * z), \mu(z)\} \text{ for all } x, y, z \in X.$$

EXAMPLE 3.2. Let $X = \{0, 1, 2\}$ be a BCI-algebra with Cayley table as follows:

Define $\mu: X \to [0,1]$ by $\mu(0) = \mu(1) = t_0$ and $\mu(2) = t_1$, where $t_0, t_1 \in [0,1]$ and $t_0 > t_1$. By routine calculations give that μ is an FSI-ideal of X.

Now we give some characterizations of FSI-ideals of X.

THEOREM 3.3. Let μ be a fuzzy ideal of X. Then the following are equivalent:

- (i) μ is an FSI-ideal of X,
- (ii) $\mu(y * (y * x)) \ge \mu((x * (x * y)) * (y * x))$ for all $x, y \in X$,
- (iii) $\mu(y * (y * x)) = \mu((x * (x * y)) * (y * x))$ for all $x, y \in X$.

Proof. (i) \Rightarrow (ii) Suppose that μ is an FSI-ideal of X. By (F_5) and (F_1) we have $(y*(y*x)) \geq \min\{\mu(((x*(x*y))*(y*x))*0), \mu(0)\} = \mu((x*(x*y))*(y*x)).$

(ii) \Rightarrow (iii) Since $(x * (x * y)) * (y * x) \le y * (y * x)$, we have $\mu((x * (x * y)) * (y * x)) \ge \mu(y * (y * x))$ as Theorem 2.4. Combining (ii) we have $\mu(y * (y * x)) = \mu((x * (x * y)) * (y * x))$.

(iii) \Rightarrow (i) Since $((x*(x*y))*(y*x))*(((x*(x*y))*(y*x))*z) \leq z$, by Theorem 2.5 we obtain $\mu((x*(x*y))*(y*x)) \geq \min\{\mu(((x*(x*y))*(y*x)) \geq \min\{\mu(((x*(x*y))*(y*x))*z), \mu(z)\}$. From (iii), $\mu(y*(y*x)) \geq \min\{\mu(((x*(x*y))*(y*x))*z), \mu(z)\}$. Hence μ is an FSI-ideal of X. The proof is complete.

THEOREM 3.4. Let μ be a fuzzy subset of X. Then μ is an FSI-ideal of X if and only if for all $t \in [0,1]$, μ_t is either empty or a sub-implicative ideal of X.

Proof. Let μ be a FSI-ideal of X and $\mu_t \neq \emptyset$ for some $t \in [0,1]$. Since $\mu(0) \geq \mu(x) \geq t$ for some x, we have $0 \in \mu_t$. If $((x*(x*y))*(y*x))*z \in \mu_t$ and $z \in \mu_t$, then $\mu(((x*(x*y))*(y*x))*z) \geq t$ and $\mu(z) \geq t$. It follows from (F_5) that $\mu(y*(y*x)) \geq \min\{\mu(((x*(x*y))*(y*x))*z), \mu(z)\} \geq t$, and so $y*(y*x) \in \mu_t$. Hence μ_t is a sub-implicative ideal of X by (I_4) .

Conversely, suppose that for each $t \in [0,1]$, μ_t is either empty or a sub-implicative ideal of X. For any $x \in X$, putting $\mu(x) = t$, then $x \in \mu_t$. Since $\mu_t \neq \emptyset$ is a sub-implicative ideal of X, we have $0 \in \mu_t$ and hence $\mu(0) \geq t = \mu(x)$. Thus $\mu(0) \geq \mu(x)$ for all $x \in X$. Now we prove that μ satisfies (F_5) . If not, then there exist $x_0, y_0, z_0 \in X$ such that $\mu(y_0 * (y_0 * x_0)) < \min\{\mu(((x_0 * (x_0 * y_0)) * (y_0 * x_0)) * z_0), \mu(z_0)\}$. Taking t_0 satisfying $\mu(y_0 * (y_0 * x_0)) < t_0 < \min\{\mu(((x_0 * (x_0 * y_0)) * (y_0 * x_0)) * z_0 \in \mu_{t_0}\}$ and $t_0 \in \mu_{t_0}$, but $t_0 \in (x_0 * y_0) \notin (x_0 * y_0) \in (x_0 * y_0)$. Thus $t_0 \in (x_0 * y_0) \in (x_0 * y_0)$ is not a sub-implicative ideal of $t_0 \in (x_0 * y_0)$. This is a contradiction with hypothesis. This completes the proof.

Next we investigate the relations between FSI-ideals and other fuzzy ideals of X.

THEOREM 3.5. Any FSI-ideal is a fuzzy ideal, but the converse does not hold.

Proof. Assume that μ is an FSI-ideal of X and let y = x in (F_5) . We obtain $\mu(x) \ge \min\{\mu(x*z), \mu(z)\}$ for all $x, z \in X$. This means that μ is a fuzzy ideal of X. The last part is shown by the following example:

EXAMPLE 3.6. Let $X = \{0, 1, 2, 3\}$ be a BCI-algebra with Cayley table as follows:

Define $\mu: X \to [0,1]$ by $\mu(0) = 1$ and $\mu(1) = \mu(2) = \mu(3) = 1/2$. Then μ is a fuzzy ideal of X, but not an FSI-ideal of X since $\mu((2*(2*1))*(1*2)) = \mu(0) = 1 > 1/2 = \mu(1) = \mu(1*(1*2))$. The proof is complete.

LEMMA 3.7 (Liu and Meng [11]). A fuzzy ideal μ of X is a fuzzy BCI-positive implicative ideal of X if and only if $\mu(x*y) \ge \mu(((x*y)*y)*(0*y))$ for all $x, y \in X$.

THEOREM 3.8. Any FSI-ideal is a fuzzy BCI-positive implicative ideal, but the converse is not true.

Proof. Suppose that μ is an FSI-ideal of X. From Theorem 3.5, μ is a fuzzy ideal. Since

$$((y*x)*((y*x)*y))*(y*(y*x))$$

$$= ((y*(y*(y*x)))*x)*((y*x)*y)$$

$$= ((y*x)*x)*(0*x),$$

we have $\mu[((y*x)*((y*x)*y))*(y*(y*x))] = \mu[((y*x)*x)*(0*x)].$ By Theorem 3.3 (iii), $\mu(y*(y*(y*x))) = \mu[((y*x)*x)*(0*x)],$ i.e., $\mu(y*x) = \mu[((y*x)*x)*(0*x)].$ Hence μ is a fuzzy BCI-positive implicative ideal of X as Lemma 3.7.

The last half part is shown by Example 3.6. We have known that μ is not an FSI-ideal of X. But it is easy to check that μ is a fuzzy BCI-positive implicative ideal of X, completing the proof.

LEMMA 3.9 (Jun and Meng [7]). A fuzzy ideal μ of X is a fuzzy p-ideal of X if and only if $\mu(x) \ge \mu(0 * (0 * x))$ for all $x \in X$.

THEOREM 3.10. Any fuzzy p-ideal is an FSI-ideal, but the converse is not true.

Proof. Let μ be a fuzzy p-ideal of X. Then μ is a fuzzy ideal [7]. In order to prove that μ is an FSI-ideal, from Theorem 3.3 (ii) it suffices to show that $\mu(y*(y*x)) \ge \mu((x*(x*y))*(y*x))$. Since

$$\begin{aligned} & \left[0*\left(0*\left(y*\left(y*x\right) \right) \right) \right]*\left[\left(x*\left(x*y\right) \right)*\left(y*x\right) \right] \\ &= \left[0*\left(\left(x*\left(x*y\right) \right)*\left(y*x\right) \right) \right]*\left[0*\left(y*\left(y*x\right) \right) \right] \\ &= \left[\left(\left(0*x\right)*\left(0*\left(x*y\right) \right) \right)*\left(0*\left(y*x\right) \right) \right]*\left[\left(0*y\right)*\left(0*\left(y*x\right) \right) \right] \\ &\leq \left(\left(0*x\right)*\left(0*\left(x*y\right) \right) \right)*\left(0*y\right) \\ &= \left(\left(0*x\right)*\left(0*y\right) \right)*\left(0*\left(x*y\right) \right) = 0, \end{aligned}$$

we have $0 * (0 * (y * (y * x))) \le (x * (x * y)) * (y * x)$. Hence $\mu(0 * (0 * (y * (y * x)))) \ge \mu((x * (x * y)) * (y * x))$. By Lemma 3.9, $\mu(y * (y * x)) \ge \mu((x * (x * y)) * (y * x))$.

The last half part is shown by Example 3.2. Define $\nu: X \to [0,1]$ by $\nu(0) = 1$ and $\nu(1) = \nu(2) = 0$. It is easy to verify that ν is an FSI-ideal of X, but not a fuzzy p-ideal of X because $\nu(0*(0*1)) = \nu(0) = 1 > 0 = \nu(1)$. The proof is complete.

DEFINITION 3.11 (Liu and Zhang [12]). A fuzzy set μ of X is called a fuzzy a-ideal of X if it satisfies (F_1) and

$$(F_6) \ \mu(y*x) \ge \min\{\mu((x*z)*(0*y)), \mu(z)\} \ \text{for any } x, y, z \in X.$$

DEFINITION 3.12 (Jun [5]). A fuzzy set μ of X is called a fuzzy q-ideal of X if it satisfies (F_1) and

$$(F_7) \ \mu(x*z) \ge \min\{\mu(x*(y*z)), \mu(y)\} \ \text{for any } x, y, z \in X.$$

LEMMA 3.13 (Liu and Zhang [12]). A fuzzy subset μ of X is a fuzzy a-ideal if and only if it is both a fuzzy q-ideal and a fuzzy p-ideal.

COROLLARY 3.14. Any fuzzy a-ideal is an FSI-ideal, but the converse is not true.

From Theorem 4.3 and 4.7 of [12], we have: (i) X is an associative BCI-algebra if and only if every fuzzy ideal of X is a fuzzy a-ideal; (ii) X is a p-semisimple BCI-algebra if and only if every fuzzy ideal of X is a fuzzy p-ideal. Combining Theorem 3.10 and Corollary 3.14 we obtain the following

COROLLARY 3.15. Any fuzzy ideal in an associative BCI-algebra (resp. a p-semisimple BCI-algebra) is an FSI-ideal.

Next we investigate the relations between FSI-ideals and BCI-algebras.

DEFINITION 3.16 (Meng and Xin [15]). A BCI-algebra is said to be implicative if it satisfies (x * (x * y)) * (y * x) = y * (y * x).

THEOREM 3.17. If X is an implicative BCI-algebra, then every fuzzy ideal of X is an FSI-ideal.

Proof. It is an immediate consequence of Definition 3.16 and Theorem 3.3 (iii). \Box

If μ is a fuzzy ideal of X, we let $\mu_* = \mu_{\mu(0)} = \{x \in X \mid \mu(x) = \mu(0)\}$ and $B(X) = \{x \in X \mid 0 \le x\}.$

THEOREM 3.18. Let μ be a fuzzy ideal of X. If X/μ is an implicative BCI-algebra, then μ is an FSI-ideal of X. Conversely, if μ is an FSI-ideal with $\mu_* \supseteq B(X)$, then X/μ is an implicative BCI-algebra.

Proof. If X/μ is an implicative BCI-algebra, then for any $x, y \in X$, we have $(\mu_x * (\mu_x * \mu_y)) * (\mu_y * \mu_x) = \mu_y * (\mu_y * \mu_x)$. Namely $\mu_{(x*(x*y))*(y*x)} = \mu_{y*(y*x)}$. Hence $\mu[(y*(y*x))*((x*(x*y))*(y*x))] = \mu(0)$. Thus $\mu(y*(y*x)) \geq \min\{\mu((y*(y*x))*((x*(x*y))*(y*x))), \mu((x*(x*y))*(y*x))\} = \mu((x*(x*y))*(y*x))$. Therefore μ is an FSI-ideal of X.

Conversely, assume that μ is an FSI-ideal with $\mu_* \supseteq B(X)$. For any $x,y \in X$, since $(y*(y*x))*((x*(x*y))*(y*x)) \ge (y*(y*x))*(y*(y*x)) = 0$, we have $(y*(y*x))*((x*(x*y))*(y*x)) \in B(X) \subseteq \mu_*$, and so $\mu[(y*(y*x))*((x*(x*y))*(y*x))] = \mu(0)$. On the other hand, $((x*(x*y))*(y*x))*(y*(y*x)) \le (y*(y*x))*(y*(y*x)) = 0$, so $\mu[((x*(x*y))*(y*x))*(y*x))*(y*(y*x))] = \mu(0)$. Thus we obtain $\mu_{y*(y*x)} = \mu_{(x*(x*y))*(y*x)}$. Namely $\mu_{y}*(\mu_{y}*\mu_{x}) = (\mu_{x}*(\mu_{x}*\mu_{y}))*(\mu_{y}*\mu_{x})$. It means that X/μ is an implicative BCI-algebra. The proof is complete.

COROLLARY 3.19. For any BCI-algebra X, the characteristic function $\chi_{B(X)}$ is always an FSI-ideal of X.

4. FSC-ideals of BCI-algebras

DEFINITION 4.1. A fuzzy subset μ of X is called a fuzzy sub-commutative ideals (briefly, FSC-ideals) of X if it satisfies (F_1) and

 $(F_8) \ \mu(x*(x*y)) \ge \min\{\mu((y*(y*(x*(x*y))))*z), \mu(z)\}$ for all $x, y, z \in X$.

EXAMPLE 4.2. Let $X = \{0, 1, 2, 3\}$ be a BCI-algebra with Cayley table as follows:

Define $\mu: X \to [0,1]$ by $\mu(0) = \mu(3) = 0.8$ and $\mu(1) = \mu(2) = 0.2$. It is easy to check that μ is an FSC-ideal of X.

Now we give some characterizations of FSC-ideals of X.

THEOREM 4.3. Let μ be a fuzzy ideal of X. Then the following are equivalent:

- (i) μ is an FSC-ideal of X,
- (ii) $\mu(x*(x*y)) \ge \mu(y*(y*(x*(x*y))))$ for all $x, y \in X$,
- (iii) $\mu(x * (x * y)) = \mu(y * (y * (x * (x * y))))$ for all $x, y \in X$,
- (iv) if $x \leq y$, then $\mu(x) = \mu(y * (y * x))$ for all $x, y \in X$,
- (v) if $x \leq y$, then $\mu(x) \geq \mu(y * (y * x))$ for all $x, y \in X$.

Proof. (i) \Rightarrow (ii) Suppose that μ is an FSC-ideal of X. By (F_8) and (F_1) we have $\mu(x*(x*y)) \geq \min\{\mu((y*(y*(x*(x*y))))*0), \mu(0)\} = \mu(y*(y*(x*(x*y)))).$

- (ii) \Rightarrow (iii) Since $y * (y * (x * (x * y))) \le x * (x * y)$, we have $\mu(y * (y * (x * (x * y)))) \ge \mu(x * (x * y))$. Combining (ii) we obtain $\mu(x * (x * y)) = \mu(y * (y * (x * (x * y))))$.
- (iii) \Rightarrow (iv) If $x \le y$, then x * y = 0. By (iii), we have $\mu(x) = \mu(y * (y * x))$.
 - (iv)⇒(v) Trivial.
- (v) \Rightarrow (i) Since $x*(x*y) \leq y$, by (v) we have $\mu(x*(x*y)) \geq \mu(y*(y*(x*(x*y)))) \geq \min\{\mu((y*(y*(x*(x*y))))*z), \mu(z)\}$. Hence μ is an FSC-ideal of X, completing the proof.

THEOREM 4.4. Let μ be a fuzzy subset of X. Then μ is an FSC-ideal of X if and only if for all $t \in [0,1]$, μ_t is either empty or a sub-commutative ideal of X.

Proof. It is similar to the proof of Theorem 3.4 and is omitted. \Box

Next we investigate the relations between FSC-ideals and other fuzzy ideals in X.

THEOREM 4.5. Any FSC-ideal is a fuzzy ideal, but the converse does not hold.

Proof. Suppose that μ is an FSC-ideal of X and let y=x in (F_8) . We have $\mu(x) \geq \min\{\mu(x*z), \mu(z)\}$ for all $x, z \in X$. Hence μ is a fuzzy ideal of X. The last half part is shown by Example 3.6. We have known that μ is a fuzzy ideal, but it is not an FSC-ideal of X because $\mu(2*(2*(1*(1*2)))) = \mu(0) = 1 > 1/2 = \mu(1) = \mu(1*(1*2))$. The proof is complete.

THEOREM 4.6. Any fuzzy p-ideal is an FSC-ideal, but the converse is not true.

Proof. Let μ be a fuzzy p-ideal of X. Then μ is a fuzzy ideal. Because

$$\begin{aligned} & \left[0*\left(0*\left(x*\left(x*y\right) \right) \right) \right]*\left[y*\left(y*\left(x*\left(x*y\right) \right) \right) \right] \\ &= \left[0*\left(y*\left(y*\left(x*\left(x*y\right) \right) \right) \right) \right]*\left[0*\left(x*\left(x*y\right) \right) \right] \\ &= \left[\left(0*y\right)*\left(\left(0*y\right)*\left(0*\left(x*\left(x*y\right) \right) \right) \right] *\left[0*\left(x*\left(x*y\right) \right) \right] \\ &\leq \left[0*\left(x*\left(x*y\right) \right) \right]*\left[0*\left(x*\left(x*y\right) \right) \right] = 0, \end{aligned}$$

we have $0 * (0 * (x * (x * y))) \le y * (y * (x * (x * y)))$, and so $\mu(0 * (0 * (x * (x * y)))) \ge \mu(y * (y * (x * (x * y))))$. By Lemma 3.9, $\mu(x * (x * y)) \ge \mu(y * (y * (x * (x * y))))$. Hence μ is an FSC-ideal of X as Theorem 4.3 (ii).

To show the last half part , we see Example 4.2. It has known that μ is an FSC-ideal of X. But it is not a fuzzy p-ideal of X since $\mu(0*(0*2)) = \mu(0) = 0.8 > 0.2 = \mu(2)$. This completes the proof.

THEOREM 4.7. Any FSI-ideal is an FSC-ideal, but the converse is not true.

Proof. Assume that μ is an FSI-ideal of X. Then μ is a fuzzy ideal as Theorem 4.5. Because

$$[(y*(y*x))*(x*y)]*[y*(y*(x*(x*y)))]$$

$$= [(y*(y*(y*(x*(x*y)))))*(y*x)]*(x*y)$$

$$= [(y*(x*(x*y)))*(y*x)]*(x*y)$$

$$= [(y*(y*x))*(x*(x*y))]*(x*y)$$

$$\leq (x*(x*(x*y)))*(x*y)$$

$$= (x*y)*(x*y) = 0.$$

we have $(y*(y*x))*(x*y) \le y*(y*(x*(x*y)))$, and so $\mu((y*(y*x))*(x*y)) \ge \mu(y*(y*(x*(x*y))))$. By Theorem 3.3 (iii) we have $\mu(x*(x*y)) \ge \mu(y*(y*(x*(x*y))))$. Hence μ is an FSC-ideal of X.

To show the last half part, we see Example 4.2. It has known that μ is an FSC-ideal of X. But it is not an FSI-ideal of X since $\mu((1*(1*2))*(2*1)) = \mu(0) = 0.8 > 0.2 = \mu(1) = \mu(2*(2*1))$. The proof is complete.

Now we give a characterization of fuzzy BCI-positive implicative ideals of X, which is needed in the sequel.

THEOREM 4.8. A fuzzy ideal μ of X is a fuzzy BCI-positive implicative ideal if and only if for all $x, y \in X$,

(*)
$$\mu(x * (x * (y * (y * x)))) \ge \mu((x * (x * y)) * (y * x)).$$

Proof. Let μ be a fuzzy ideal satisfying (*). Since

$$((x*y)*((x*y)*x))*(x*(x*y))$$

$$= ((x*(x*(x*y)))*y)*((x*y)*x)$$

$$= ((x*y)*y)*(0*y),$$

we have $\mu[((x*y)*((x*y)*x))*(x*(x*y))] = \mu(((x*y)*y)*(0*y))$. Substituting x*y for x and x for y in (*), we have $\mu[(x*y)*((x*y)*(x*y)*(x*(x*y)*))] \ge \mu(((x*y)*y)*(0*y))$. Since

$$(x*y)*((x*y)*(x*(x*(x*y))))$$

= (x*y)*((x*y)*(x*y))
= x*y,

we have $\mu(x*y) \ge \mu(((x*y)*y)*(0*y))$. By Lemma 3.7, μ is a fuzzy BCI-positive implicative ideal of X.

Conversely, let μ be a fuzzy BCI-positive implicative ideal of X. Since

$$[((y*(y*x))*(y*x))*(x*y)]*[(x*(x*y))*(y*x)]$$

$$= [((y*(y*x))*(x*y))*(y*x)]*[(x*(x*y))*(y*x)]$$

$$\leq [(y*(y*x))*(x*y)]*(x*(x*y))$$

$$\leq (y*(y*x))*x = 0,$$

we have $\mu[((y*(y*x))*(y*x))*(x*y)] \ge \mu[(x*(x*y))*(y*x)]$. Let s = y*x in ((y*(y*x))*(y*x))*(x*y). Then

(a)
$$\mu[((y*s)*s)*(x*y)] \ge \mu((x*(x*y))*(y*x)).$$

Let t = x * (y * (y * x)) = x * (y * s). Because [(((y * t) * s) * s) * (0 * s)] * [((y * s) * s) * (x * y)]

$$[(((y*t)*s)*s)*(0*s)] * [((y*s)*s)*(x*y)]$$

$$= [(((y*s)*s)*(0*s)) * (((y*s)*s)*(x*y))] * t$$

$$\leq ((x*y)*(0*s)) * t$$

$$= ((x*t)*y)*(0*s)$$

$$= ((x*(x*(y*s)))*y)*(0*s)$$

$$\leq ((y*s)*y)*(0*s)$$

$$= (0*s)*(0*s) = 0,$$

we have $\mu[(((y*t)*s)*s)*(0*s)] \ge \mu[((y*s)*s)*(x*y)]$. By Lemma 3.7, we have

(b)
$$\mu((y*t)*s) \ge \mu[((y*s)*s)*(x*y)].$$

Since

$$\begin{aligned} & \left[\left((x*t)*t \right)*(0*t) \right]*((y*t)*s) \\ & = \left[\left((x*t)*((y*s)*t) \right]*(0*t) \\ & \leq \left((x*t)*(y*s) \right)*(0*t) \\ & = \left[(x*(x*(y*s)))*(y*s) \right]*(0*t) \\ & \leq \left((y*s)*(y*s) \right)*(0*t) \\ & = 0*(0*t), \end{aligned}$$

and

$$0 * t$$
= 0 * (x * (y * (y * x)))
\(\le 0 * (x * x) \)
= 0,

we have 0 * (0 * t) = 0, and so $\mu[((x * t) * t) * (0 * t)] \ge \mu((y * t) * s)$. By Lemma 3.7 again, we have

$$\mu(x*t) \ge \mu((y*t)*s).$$

Combining (a), (b) and (c), we obtain $\mu(x*t) \ge \mu((x*(x*y))*(y*x))$, i.e., $\mu(x*(x*(y*(y*x)))) \ge \mu((x*(x*y))*(y*x))$. The proof is complete.

The following theorem shows that the close relations among FSI-ideals, FSC-ideals and fuzzy BCI-positive implicative ideals.

THEOREM 4.9. Let μ be a fuzzy subset of X. Then μ is an FSI-ideal if and only if it is both an FSC-ideal and a fuzzy BCI-positive implicative ideal.

Proof. If μ is an FSI-ideal, by Theorem 3.8 and 4.7, μ is both an FSC-ideal and a fuzzy BCI-positive implicative ideal. Conversely, if μ is both an FSC-ideal and a fuzzy BCI-positive implicative ideal, by Theorem 4.5, μ is a fuzzy ideal. For any $x, y \in X$, by Theorem 4.3 (ii) and Theorem 4.8, we have $\mu(y*(y*x)) \geq \mu(x*(x*(y*(y*x)))) \geq \mu((x*(x*y))*(y*x))$. Hence μ is an FSI-ideal of X as Theorem 3.3 (ii). The proof is complete.

Next we investigate the relation between FSC-ideals and BCI-algebras.

DEFINITION 4.10 (Meng and Xin [16]). A BCI-algebra is commutative if and only if x * (x * y) = (y * (y * (x * (x * y))).

THEOREM 4.11. If X is a commutative BCI-algebra, then every fuzzy ideal of X is an FSC-ideal.

Proof. It is an immediate consequence of Definition 4.10 and Theorem 4.3 (iii). \Box

THEOREM 4.12. Let μ be a fuzzy ideal of X. If X/μ is commutative, then μ is an FSC-ideal. Conversely, if μ is an FSC-ideal with $B(X) \subseteq \mu_*$, then X/μ is a commutative BCI-algebra.

Proof. It is similar to the proof of Theorem 3.16 and omitted. \Box

COROLLARY 4.13. For any BCI-algebra X, the characteristic function $\chi_{B(X)}$ is always an FSC-ideal of X.

5. Conclusion

BCK-algebras and BCI-algebras are two important classes of logical algebras. Many logical algebras can be represented in BCK-algebras or BCI-algebras. For example, Boolean algebras are equivalent to the bounded implicative BCK-algebras [4], MV-algebras are equivalent to the bounded commutative BCK-algebras [18], Hilbert algebras are equivalent to the positive implicative BCK-algebra [1]. In this paper we proposed the concepts of FSI-ideals and FSC-ideals in BCI-algebras, established the relations between FSI-ideals (resp. FSC-ideals) and some other fuzzy ideals, between FSI-ideals (resp. FSC-ideals) and BCI-algebras. But further properties of FSI-ideals and FSC-ideals remain to be revealed. For example, do the converses of Theorem 3.17 and Theorem 4.11 hold? In [11], the notion of fuzzy BCI-implicative ideals was introduced. What relations between FSI-ideals and fuzzy BCI-implicative ideals are?

References

- [1] R. Barbacioru, *Positive implicative BCK-algebras*, Math. Japon. **38** (1993), no. 3, 513-529.
- [2] P. S. Das, Fuzzy groups and level subgroups, J. Math. Anal. Appl. 84 (1981), no. 1, 264-269.
- [3] K. Iseki, On BCI-algebras, Math. Sem. Notes Kobe Univ. 8 (1980), no. 1, 125– 130.
- [4] K. Iseki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon. 23 (1978/79), no. 1, 1-26.
- [5] Y. B. Jun, Fuzzy quasi-associative ideals in BCI-algebras, J. Fuzzy Math. 4 (1996), no. 3, 567–581.

- [6] Y. B. Jun, S. M. Hong, J. Meng and X. L. Xin, Characterizations of fuzzy positive implicative ideals in BCK-algebras, Math. Japon. 40 (1994), no. 3, 503-507.
- [7] Y. B. Jun and J. Meng, Fuzzy p-ideals in BCI-algebras, Math. Japon. 40 (1994), no. 2, 271–282.
- [8] _____, Fuzzy commutative ideals in BCI-algebras, Commun. Korean Math. Soc. 9 (1994), no. 1, 19–25.
- [9] Y. B. Jun and E. H. Roh, Fuzzy commutative ideals of BCK-algebras, Fuzzy Sets and Systems 64 (1994), no. 3, 401–405.
- [10] Y. L. Liu and J. Meng, Sub-implicative ideals and sub-commutative ideals of BCI-algebras, Soochow J. Math. 26 (2000), no. 4, 441-453.
- [11] _____, Fuzzy ideals in BCI-algebras, Fuzzy Sets and System 123 (2001), no. 2, 227–237.
- [12] Y. L. Liu and X. H. Zhang, Fuzzy a-ideals of BCI-algebras, Adv. Math. (China) 31 (2002), no. 1, 65–73.
- [13] _____, Characterization of weakly positive implicative BCI-algebras, J. Hanzhong Teachers College (1) (1994), 4–8.
- [14] J. Meng, Y. B. Jun and H. S. Kim, Fuzzy implicative ideals of BCK-algebras, Fuzzy Set and Systems 89 (1997), no. 2, 243–248.
- [15] _____, Implicative BCI-algebras, Pure Appl. Math. 8 (1992), no. 2, 99–103.
- [16] J. Meng and X. L. Xin, Commutative BCI-algebras, Math. Japon. 37 (1992), no. 3, 562-572.
- [17] J. N. Mordeson and D. S. Malik, Fuzzy Commutative Algebra, World Scientific, Singapore, 1998.
- [18] D. Mundici, MV-algebras are categorically equivalent to bounded commutative BCK-algebras, Math. Japon. 31 (1986), no. 6, 889–894.
- [19] O. G. Xi, Fuzzy BCK-algebras, Math. Japon. 36 (1991), no. 5, 935–942.
- [20] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338–353.

YONG LIN LIU, DEPARTMENT OF APPLIED MATHEMATICS, XIDIAN UNIVERSITY, XI'AN 710071, SHAANXI, P. R. CHINA/ DEPARTMENT OF MATHEMATICS, NANPING TEACHERS COLLEGE, NANPING 353000, FUJIAN, P. R. CHINA *E-mail*: ylliun@tom.com

SAN YANG LIU, DEPARTMENT OF APPLIED MATHEMATICS, XIDIAN UNIVERSITY, XI'AN 710071, SHAANXI, P. R. CHINA *E-mail*: liusanyang@263.net

JIE MENG, DEPARTMENT OF MATHEMATICS, NORTHWEST UNIVERSITY, XI'AN 710069, SHAANXI, P. R. CHINA *E-mail*: mengjie@pub.xaonline.com