DOI QR코드

DOI QR Code

Growth of Carbon Nanotubes on Different Catalytic Substrates

촉매금속(Ni-Cu)의 적층 증착법에 의한 탄소나노튜브의 성장

  • Published : 2004.03.01

Abstract

노튜브의 길이는 급격히 증가하였지만 촉매금속의 적층방법에 따른 탄소나노튜브의 성장 형태는 큰 차이가 없었다. 특히, ICBD 방법에 의해 Ni 촉매금속을 증착한 경우 다른 방법에 비하여 직선적인 탄소나노튜브가 관찰되었다. ^x Carbon nanotubes were grown on SiO$_2$/Si substrates by applying $C_2$H$_2$ gas through chemical vapor deposition process. It was found that carbon nanotubes were grown successfully on the substrates with catalytic films under 20 $\AA$ total thickness. The increase in reaction temperature from 50$0^{\circ}C$ to 80$0^{\circ}C$ resulted in longer carbon nanotube, but there was no clear tendencies with different types of catalytic layers. It was evident that carbon nanotubes became more straight on the substrate with Ni catalytic film produced by ICBD method.

Keywords

References

  1. Nature v.354 Helical Microtubules of Graphitic Carbon S.Iijima https://doi.org/10.1038/354056a0
  2. Natrue v.358 Large-Scale Synthesis of Carbon Nanoyubes T.W.Ebbesen;P.M.Ajayan https://doi.org/10.1038/358220a0
  3. Nature v.363 Cobalt-Catalysed Growth of Carbon Nanotubes with Single-Atomic-Layer Walls D.S.Bethune;C.H.Kiang;M.S.de Vries;G.Gorman;R.Savoy;J.Vasquez;R.Beyers https://doi.org/10.1038/363605a0
  4. Sci. v.273 Cystalline Ropes of Metallic Carbon Nanotubes A.Thess;R.Lee;P.Nikolaev;H.Dai;P.Petit;J.Robert;C.Xu;Y.Lee;S.Kim;A.Rinzler;D.Colbert;G.Scuseria;D.Tomanek;J.Fischer;R.Smalley https://doi.org/10.1126/science.273.5274.483
  5. Sci. v.282 Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass Z.F.Ren;Z.P.Huang;J.W.Xu;J.H.Wang;P.Bush;M.P.Siegal;P.N.Provencio https://doi.org/10.1126/science.282.5391.1105
  6. Science of Fullerenes and Carbon Nanotubes M.S.Dresslhaus;G.Dresselhaus;P.C.Eklund
  7. Nature v.381 Exceptionally High Young's Modulus Observed for Individual Carbon Nanotubes M.M.J.Treacy;T.W.Ebbesen;J.M.Gibson https://doi.org/10.1038/381678a0
  8. Nature v.391 Broken Symmetry and Pseudogaps in Ropes of Carbon Nanotubes P.Delaney;H.J.Choi;J.Ihm;S.G.Louie;M.L.Cohen https://doi.org/10.1038/35099
  9. Solid-State Electronics v.45 Field Emission Displays : A Critical Review A.A.Talin;K.A.Dean;J.E.Jaskie https://doi.org/10.1016/S0038-1101(00)00279-3
  10. Mater. Sci. Eng. C. v.23 Carbon Nanotubes for Microelectronics: Status and Future Prospects W.Hoenlein;F.Kreupl;G.S.Duesberg;A.P.Graham;M.Licbau;R.Seidel;E.Unger https://doi.org/10.1016/j.msec.2003.09.153
  11. Fuel Cells Bull. v.4 Carbon Nanostructures : An Efficient Hydrogen Storage Medium for Fuel Cells K.Atldnson;S.Roth;W.Griinwald
  12. Chem. Phys. Lett. v.354 High Density of Multiwallend Carbon Nanotubes Observed on Nickel Electroplated Copper Substrates by Microwave Plasma Chemical Vapor Deposition M.K.Singh;P.P.Singh;E.Titus;D.S.Misra;F.LeNormand https://doi.org/10.1016/S0009-2614(02)00133-1
  13. Mater. Sci. Eng. C. v.23 The Influence of the Substrate on the Growth of Carbon Nanotubes from Nickel Clusters-An Investigation Using STM, FE-SEM, TEM and Raman Spectroscopy A.C.Wright;Y.Xiong;N.Maung;S.J.Eichhom;R.J.Yong https://doi.org/10.1016/S0928-4931(02)00254-0
  14. Ionized-Cluster Beam Deposition and Epitaxy T.Takagi

Cited by

  1. Synthesis of electrospun BaSrTiO3/PVP nanofibers vol.53, pp.1, 2010, https://doi.org/10.1007/s10971-009-2054-7
  2. Synthesis of Vertically Aligned Carbon Nanotubes by dc PECVD vol.326-328, pp.1662-9795, 2006, https://doi.org/10.4028/www.scientific.net/KEM.326-328.333