Computation of Dynamic Stress in Flexible Multi-body Dynamics Using Absolute Nodal Coordinate Formulation

절대절점좌표를 이용한 탄성 다물체동역학 해석에서의 동응력 이력 계산에 관한 연구

  • 서종휘 (아주대학교 대학원 기계공학과) ;
  • 정일호 (아주대학교 대학원 기계공학) ;
  • 박태원 (아주대학교 기계공학부)
  • Published : 2004.05.01

Abstract

Recently, the finite element absolute nodal coordinate formulation (ANCF) was developed for the large deformation analysis of flexible bodies in multi-body dynamics. This formulation is based on the finite element procedures and the general continuum mechanics theory to represent the elastic forces. In this paper, a computation method of dynamic stress in flexible multi-body dynamics using absolute nodal coordinate formulation is proposed. Numerical examples, based on an Euler-Bernoulli beam theory, are shown to verify the efficiency of the proposed method. This method can be applied for predicting the fatigue life of a mechanical system. Moreover, this study demonstrates that structural and multi-body dynamic models can be unified in one numerical system.

Keywords

References

  1. Choi, I. S., 'Calculation of dynamic stress time history of a component using computer simulation,' 'Ajou University M.S. Thesis, 1999
  2. Yim, H. J., Lee, S. B., 'An integrated CAE system for dynamic stress and fatigue life prediction on mechanical systems,' J. of the KSPE, Vol. 10, No. 2, pp. 158-168, 1996
  3. Ryu, J. H., Kim, H. S., Yim, H. J., 'An efficient and accurate dynamic stress calculation by flexible multibody dynamic system simulation and reanalysis,' International J. of the KSME, Vol. 11, No. 4, pp. 386-396, 1997 https://doi.org/10.1007/BF02945077
  4. Kim, C. B., Baek, Y. K., 'Dynamic analysis of a flexible body in multibody system using DADS and MSC/NASTRAN,' J. of KSPE, Vol. 18, No. 2, pp. 63-70, 2001
  5. LMS, DADS Flex Manual Revision 9.5, The LMS Corporation 2001
  6. Yoo, W. S., Haug, E. J., 'Dynamic of articulated structures, Part 1: Theory,' J. of Structural Mechanism, Vol. 14, No. 1, pp. 105-126, 1986 https://doi.org/10.1080/03601218608907512
  7. Shabana, A. A., 'Computer Implementation of the absolute nodal coordinate formulation for flexible multibody dynamics,' J. of Nonlinear Dynamics, Vol. 16, pp. 293-306, 1998 https://doi.org/10.1023/A:1008072517368
  8. Escalona, J. L., Hussien, H. A., Shabana, A. A., 'Application of the absolute nodal coordinate formulation to multibody system dynamics,' J. of Nonlinear Dynamics, Vol. 16, pp. 293-306, 1998 https://doi.org/10.1023/A:1008072517368
  9. Yoo, W. S., Lee, J. H., Sohn, J. H., 'Physical experiments for large deformation problems,' Proc. of the KSME Spring Conference, No. 03S115, pp. 705-710, 2003
  10. MSC/NASTRAN Manual, The Macneal-Schwendler Corporation, 1996
  11. Shabana, A. A., 'Definition of the elastic forces in the finite-element absolute nodal coordinate formulation and the floating frame of reference formulation,' J. of Multibody System Dynamics, Vol. 5, pp. 21-54, 2001 https://doi.org/10.1023/A:1026465001946
  12. Omar, M. A., Shabana, A. A., 'A Two-dimensional shear deformable beam for large rotation and deformation problems,' J. of Sound and Vibration, Vol. 243, No. 3, pp. 565-576, 2001 https://doi.org/10.1006/jsvi.2000.3416
  13. Shabana, A. A., 'Three dimensional absolute nodal coordinate formulation for beam elements,' J. of Mechanical Design, Vol. 123, pp. 606-621, 2001 https://doi.org/10.1115/1.1410100
  14. Shabana, A. A., Christensenm, A. P., 'Three dimensional absolute nodal coordinate formulation: Plate Problem,' J. of Numerical Methods in Engineering, Vol. 40, pp.2775-2790, 1997 https://doi.org/10.1002/(SICI)1097-0207(19970815)40:15<2775::AID-NME189>3.0.CO;2-#
  15. Mikkola, A. M., Shabana, A. A., 'A Non-Incremental finite element procedure for the analysis of large deformation of plates and shells in mechanical system applications,' J. of Multibody System Dynamics, Vol. 9, pp. 283-309, 2003 https://doi.org/10.1023/A:1022950912782
  16. Kenneth, H. H., Thornton, E. A., 'The Finite Element Method for Engineers,' John Wiley& Sons, Inc. pp. 38-46
  17. Haug, E. J., 'Computer-Aided Kinematics and Dynamics of Mechanical System,' Allyn and Bacon, pp. 218-230, 1989
  18. Craig, R. R., 'Mechanics of Materials,' John Wiley& Sons, pp. 258-265, 1996
  19. Barlow, J., 'Optimal Stress Locations in Finite Element Models,' J. of Numerical Methods in Engineering, Vol. 10, pp. 243-251, 1976 https://doi.org/10.1002/nme.1620100202
  20. Goetz, A., 'Introduction to Differential Geometry,' Addision Wesley Publishing Company, 1970
  21. Liu, T. S., 'Computational methods for life prediction of mechanical components of dynamic system,' Iowa University Ph. D. Thesis, 1987