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Parameter Evaluation of a Smooth Elasto-plastic Cap Model
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Abstract

In this paper, the method of parameter estimation of a mathematical constitutive model known as the smooth
elasto-plastic cap model is studied. To predict the response of the real soil using this model, the eight parameters
describing the constitutive equations have to be determined. First, experimental data are obtained from simple
laboratory experiments such as one dimensional confined compression test in a consolidometer and drained triaxial
compression test with the Ottawa sand for the reference value. Then, the numerical experiments are performed
in the cap model with initial guessed parameters. The optimization method is utilized to fit the model response
to experimental data by minimizing the error between the laboratory and numerical responses. Special attention

is given to the parameter estimation procedure of numerical triaxial test due to the difficulty of the lateral strain

measurements.
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1. Introduction Several methods for determining the unknown para-
meters have been presented in the literature. The standard

Once a mathematical constitutive law consistent with curve fitting method (Desai and Siriwardane, 1984;
the physical behaviors is derived, it is necessary to Zaman et al., 1982) was used based on physical insight
identify and choose all significant parameters that are into the experimental data. Although this procedure
needed to define it. In this paper, the parameter provides a parameter fitting inspired by construction of
estimation method of the elasto-plastic cap model (Seo, the numerical model, it has some drawbacks: (1) a large
2001) is studied. amount of conventional experimental data is required;
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and (2) it is not possible to use some existing non-
conventional experimental data. Gauss-Newton method
(Matsui et al., 1994) and Marquardt-Lenvenberg method
(Simo et al., 1998) were also reported based on optimi-
zation techniques. Gauss-Newton is simple and uses a
limited amount of test data, however, there is a major
drawback. The coefficient matrix of simultaneous equations
can be singular or nearly singular which leads to numeri-
cal instabilities. In this case, if the objective function
becomes completely insensitive to any of the design
variables during the optimization iteration, the matrix will
be rank deficient.

In this study, an alternative constrained optimization
procedure which is using the existing optimization code
such as IDESIGN (Arora et al., 1997) embedded SQP
algorithm is utilized with limited test data. Using the
commercial optimization program can avoid the com-
plicated optimization coding procedure with numerical
stabilities. In the simulation reported herein, two tests of
simple laboratory experimental data, using the Ottawa
sand for the reference value, are used to define the eight
material parameters (o, 8, W, D, #, H, A and p)
that make up the cap model. This paper starts a brief
review of the smooth cap model, then the detailed para-

meter estimation procedure will be explained as follows.

2. Description of the Cap Model

In this section, the basic constitutive equations of a
smooth three surface cap model (Seo, 2001) are first
summarized. Utilizing the assumption of small deformation,
the strain tensor admits the additive elasto-plastic decom-

position;
e=¢e’+e? )

where ¢ ¢° and ¢’ are the total, elastic, and plastic
strain tensors, respectively. The elastic response of the
material is assumed to be characterized by a constant

isotropic tensor C—= K 1®1 + 241 4, and the incremental

stress response of the material is given by
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where K is the bulk modulus of the soil and g is the
shear modulus. In a stress space, the elastic domain is
bounded by three distinct yield surfaces which are
functions of the two invariants ;= o) and |lsll,
where s is the deviatoric part of the stress tensor
o(i.e. s=1Ig4, 0. The three surfaces comprising the
yield surface intersect in a smooth manner as shown in
Fig. 1.

The form of the yield function, f,(c, x) (m=1,2,3)
is specified in terms of functions F,, F.and F, which
are respectively called the Drucker-Prager envelope
function, the compression cap function, and the tension

cap function. The mathematical forms are

fi(o, @ =lall*— F {I,)<0 €)]
folo, g, x) =72~ F (I, x) <0 4)
Fs(o. =7l * —F (I,)<0 (%)

where: p=s—gqg and |[7ll®=[7: 5] % As is customary
s denotes the deviatoric stress, and g denotes a purely
deviatoric back stress associated with kinematic har-

dening. The specific forms of F,_, F,. and F, are

defined here as

FI))=a—06I, IS<I,<IT (6)
FI,,)=R¥x)—(I,—x)?% I,{If(x) @)

F(I)=R%—1I} IpIf (8)

In the preceding expressions, o« and § are basic material
constants. Approximate translation from Mohr-Coulomb
parameters to Drucker-Prager parameters has been

provided, as for example in Chen and Saleeb(1982), as
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Fig. 1. Smooth, three-surface, two invariant yield functions for a
cap model



_ Ve
= /3 tan T 7 2
o= \/—Ztan¢ (9)

"~ 3(1+4/3tan %¢) 2

Whereas the entities 7, and I¢(x) denote, respectively,
a fixed delimiting point between the Drucker-Prager
envelope and the tension cap, and the Drucker-Prager
envelope and the compression cap. Specific expressions

for these points are

I{=acos (¢)sin (¢) (10)
I{=x+ R(x)sin (¢) (11)

where ¢=tan !(6). As the compression cap surface

translates along the 7, axis, the cap surface radius R(x)

changes as a function of the cap parameter x as follows
R(x) =—x sin (¢) + a cos (¢) (12)

The tension cap surface is circular. The center of
tension cap resides at 7,=0, and the radius of the

surface is a constant R, which is expressed as
R r=acos (¢) (13)

The hardening law for this model derives from the fact
that the volumetric crush curve (plastic volumetric strain
e’ versus I,) is assumed to be an exponential of the

form

e?=W[1—exp{DX(x}] (14)

Differentiating the equation with respect to x allows us
to obtain a variable tangent hardening modulus #’(x) for

x as follows

rey__dxe _ _exp(=DX)
where X =1-— RF .(x); W represents the maximum
possible plastic volumetric strain for the medium, with
the reference state being the material's virgin unloaded
state; and D "' denotes the absolute value of 7, at which

e ! -100% of the medium's original crushable porosity

remains. This nonlinear hardening modulus 4’ (x) is used
to provide a nonlinear incremental hardening law

governing movement of the cap parameter
x=K(O)t(e”) (16)

A purely deviatoric linear kinematic hardening law is

employed with this model, the rate form of which is
g=HIu" €’ (17)

where H is a constant plastic hardening modulus.
The flow rule for this model is associated, and since
multiple surfaces are potentially active at any given

instant, it takes Koiter's generalized form
. . of
p_ m_9J m
£ zm: P (18)

in the above expressions, a, 8, W, D, x,H,A,and p
are material parameters which characterize the smooth

cap model considered here.

3. Optimization Problem

Sequential quadratic programming(SQP) method uses
the Taylor series expansion to linearize a nonlinear
optimization problem and linerarized subprogram trans-
formed to a quadratic program. While this method uses
the basic idea as the Gauss-Newton method, it treats the
optimal fitting process as a least square constrained
optimization problem. The constrains imposed on the
optimization problem are in the sense of physically
meaningful bounds. The formal statement of the

optimization problem is

MIN [(H)= ﬁl (u;—2,(8)?  subjected to

a;<b;<c; i=11t8 19

where N is number of observation; z; is observed
response from the laboratory experiments; z ; is response
from constitutive model; ; is ;” data point; &, are
design parameter vectors; a;and c, are lower and upper

bounds of design variables. The constrains imposed on
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the optimization problem emanate from physical restric-
tions placed on the cap parameters. For example, for a
physically meaningful model, one should have 5;>0.
There exists a wide variety of algorithms to solve the
above constrained optimizatiorn poblems. To avoid imple-
menting a such algorithms, the existing optimization code
IDESIGN (Arora et al., 1997) was used here due to its
robustness and generality. The sequential quadratic
programming algorithms can be found in Arora (1989).

Since the magnitude of cap model parameters are
vastly different in size, it is important to normalize the
design variables for better performance of the optimiza-

tion process. The normalized design variables b, are

defined as

b= (20)

where x ; are the ; original design variables and % ; are
their normalization factors. Thus, using appropriate £,

the design variables can be forced to vary approximately

between -1 to +1. The derivatives of an objective

function J(x; with respect to normalized variables b,

are given as

9] _ 9] 9%xi _ 3] ,
b, ~ ox; ab;  ax, @1)

The optimal algorithm with the normalized design
variables can be applied to any set of experimental data
to obtain the optimal fit in a least square sense for the

constitutive model under consideration.

4. Parameter Estimation and Results

In order to access the capability of smooth cap model
in predicting response behavior of a real material, model
parameters are needed to be estimated from laboratory
experimental data. In this section parameter estimation
procedure for one dimensional confined compression test
and drained triaxial compression test with Ottawa sand
are presented, followed by the numerical simulation

results. Satisfactory agreements are achieved between

128 Jour. of the KGS, Vol. 20, No. 2, March 2004

experimental data and numerical model responses.

4.1 Estimation from One Dimensional Com-
pression Test

For the uniaxial strain test conducted in the laboratory,
the dry sand sample was loaded axially under stress
controlled mode. The schematic diagram for the test is
shown in Fig. 2.

A general procedure for the estimation of material
parameters used by the constitutive model is as follows; 1)
initial normalized design variables & ; are assumed within
physically reasonable bounds; 2) the design variables

were unscaled (x,= £, - b,) to calculate the response

Dial
guage Load

.

Fig. 2. Diagram of experimental uniaxial compression test

Optimization program

read initial scaled

variables b

Unscale the variables
z=k*b

1
Compute J(z)and

dJ(z)/db

Fig. 3. Optimization algorithm
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Fig. 4. Simulated results in uniaxial compression test

Table 1. Optimal value for Ottawa sand

Material Parameter Uniaxial strain test| Triaxial test
(Upper and lower bound)| (Optimal value) | (Optimal value)
0<A<10°(kN/m?) 2.3719x10" 2.3719x10 "
0<u<10%(&N/m*) 1.1101x107 1.1101x107

0<a<10%(N/m?) 2.9717x10° 3.6957x10°
0<6<0.5 0.2727 0.2727
0< W=0.1 0.0157 0.0157
0<D=<10 *(kN/m?) ! 2.994% 10 ~* 2.994%x10 ~*
—10° < x<O(N/m® ~ 100 — 1000

from the constitutive model; 3) the objective function and
the gradient were computed.

The estimation algorithm is shown in Fig. 3. A
comparison between experimental and predicted curve is
shown in Fig. 4. The values of the material parameters
obtained in the estimation process and the boundary

values used are summarized in Table 1.

4.2 Estimation from Drained Triaxial Compre—
ssion Test

In the laboratory experimental test, a confining pressure
(¢p) is first applied, by using a fluid in the chamber.
Once an equilibrium state of stresses was reached, the
additional axial stress ( A¢;) is then slowly increased
while the drainage connected is opened. The increased
axial stress causes shearing of the specimen. A diagram
of triaxial test layout is shown in Fig. 5. This test features

both stress and strain controlled aspects. In the first stage,

which is stress controlled, a confining pressure is applied
and the volumetric strain results. In the second stage the
lateral stresses are maintained while the axial strain is
applied.

In the numerical simulation for the parameter estima-
tion for drained triaxial compression test, there need to
be two steps. 1) Pre-load step: In this step, volumetric
strain is applied with small increment to the constitutive
model until the stresses reach designated confining

pressure. 2) Generating the triaxial data: Since, a

conventional triaxial test has difficulty in measuring the
lateral strain increment, which are needed for the
optimization input data, for given stress increment,
numerical procedures, such as Newton-Raphson iteration
method with line search, are used for generating the

lateral strain( e,=¢e,). There might be several strain

increment steps in the strain-stress curves.

specimen
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Fig. 5. Diagram of the experimental triaxial test layout

Apply A (€)n11

Assume Af{g)ppr = A(€)n1 =0
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Calculate the stresses

Oni1 = Opat (O Neyr, b,)

1=0
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]
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Fig. 6. Computational triaxial compression test algorithm
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Fig. 7. Simulated results in triaxial compression test

At single increment strain step ( Aej(,4+qy) with the
assumption of Agy,. )= A€+ =0, we need to find
O1n+p AN €501y =E30uep SUCh that Agy. =
Ao y,+1=0. The complete algorithm is shown in Fig.
5. After the previous two steps are complete, the object
function and the gradient of the objective function are
computed for the optimization process (refer to Fig. 3).
A comparison between experimental and predicted stress-
strain curve is shown in Fig. 6. The values of the material
parameters obtained in the estimation process and the

boundary values used are summarized in Table 1.

5. Conclusion

The parameter estimation procedures for the soil model
have been presented to identify the eight parameters of
the smooth cap model using Ottawa sand. Experimental
data are first obtained from uniaxial strain test and

triaxial test which are considered to be representative of
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material response. Then, the numerical simulations with
initially guessed values are performed until the model
responses are matched with the experimental test results.
Special attention is given to the parameter estimation
procedure of numerical triaxial test due to the difficulty

of the lateral strain measurements.
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