DOI QR코드

DOI QR Code

Fabrication of Al2O3/ZrO2Ceramics by the Polymerization Dispersion Process

ZrO2의 고분자화 분산법을 이용한 Al2O3/ZrO2요업체의 제조

  • Cho, Myung-Je (Engineering Research Institute, Gyeongsang National University) ;
  • Hwang, Kyu-Hong (Engineering Research Institute, Gyeongsang National University) ;
  • Lee, Jong-Kook (Division of Metallurgical and Material Engineering, Chosun University)
  • Published : 2004.04.01

Abstract

To improve mechanical properties of $Al_2$O$_3$/ZrO$_2$composites have been controlled dispersion of ultra low size ZrO$_2$ particles in $Al_2$O$_3$ ceramics by polymeric precursor method (Pechini process). In case of coprecipitation or mechanical mixing of ZrO$_2$ powders with $Al_2$O$_3$, homogeneous dispersion and controlling the ZrO$_2$ size were relatively difficult due to high sintering temperature. So the polyesterization process of Zr/Y(NO$_3$)$_3$-citric acid solution in ethylene glycol with the commercial sub-micron sized o(-alumina powder (Sumitomo AES-11(0.4 ${\mu}{\textrm}{m}$)) was adopted in order to obtain homogeneous dispersion of ZrO$_2$ in A1203. By this partial polyesterization process, the homogeneous dispersion of relatively low sized ZrO$_2$in $Al_2$O$_3$/ZrO$_2$composites was achieved at 1450∼1$600^{\circ}C$ of sintering temperature range and their mechanical properties were measured.

Al$_2$O$_3$/ZrO$_2$복합체의 기계적 성질 향상을 위하여 분산되는 ZrO$_2$상을 Zr-Y-polyester의 고분자화(polyesterization) 공정(Pechin법)을 이용하여 알루미나 기지 중에 초미립으로 균질하게 분산시키기 위한 방안을 고찰하여 보았다. 일반적으로 공침법에 의해 제조되는 $Al_2$O$_3$/ZrO$_2$ 복합체의 경우 초기 ZrO$_2$입자의 크기가 매우 작아도 알루미나 내에 분산되는 ZrO$_2$입자가 소결시에 비교적 빠르게 성장 및 입자간의 응집이 발생하게 되며 이로 인해 분산의 불균일을 유발하여 미세하고 균질한 복합체를 얻기가 힘들다. 따라서 상용 이소결성 $\alpha$-Al$_2$O$_3$분말(Sumitomo.AES-11(0.5$mu extrm{m}$))에 ZrO(NO$_3$)$_2$와 Y(NO$_3$)$_3$를 citric acid/ethylene glycol과 혼합한 polyesterization시켜 $\alpha$-Al$_2$O$_3$입자 표면에 미세하고 균질하게 코팅 형태로 부착되도록 하였다. 이를 90$0^{\circ}C$에서 하소한 후 1450∼1$600^{\circ}C$의 온도에서 소결하여 미세한 ZrO$_2$입자가 매우 균질하게 분산된 $Al_2$O$_3$/ZrO$_2$ 복합체를 제조하였으며 이의 기계적 성질을 관찰하였다.

Keywords

References

  1. J. Am. Ceram. Soc. v.73 no.2 Perspective on the Development of High-Toughness Ceramics A.G.Evans https://doi.org/10.1111/j.1151-2916.1990.tb06493.x
  2. J. Am. Ceram. Soc. v.65 Mechanics of Transformation Toughening in Brittle Materials R.M.McMeeking;A.G.Evans https://doi.org/10.1111/j.1151-2916.1982.tb10426.x
  3. Advances in Ceramics, Vol.3. Science and Technology of Zirconia Ⅰ Alloy Design in Partially Stabilized Zirconia A.H.Heuer;A.H.Heuer(et al.)
  4. J. Mater. Sci. v.24 Flaw Tolerance in Ceramics with Rising Crack-Resistance Characteristics S.J.Bennison;B.R.Lawn https://doi.org/10.1007/BF01139037
  5. J. Ceram. Soc. Jpn. v.99 New Design Concept of Structural Ceramics-Ceramic Nanocomposites K.Niihara
  6. J. Am. Ceram. Soc. v.59 N.Claussen;J.Steeb https://doi.org/10.1111/j.1151-2916.1976.tb09524.x
  7. J. Am. Ceram. Soc. v.74 no.12 Enhanced Fracture Toughness in Layered Microcomposites of $CE-ZrO_2 and Al_2O_3$ D.B.Marshall;J.J.Ratto;F.F.Lange https://doi.org/10.1111/j.1151-2916.1991.tb04290.x
  8. J. Am. Ceram. Soc. v.64 no.6 Grain-Size Dependence of Fracture Energy in Ceramics: Ⅰ R.W.Rice;S.W.Freiman;P.F.Becher https://doi.org/10.1111/j.1151-2916.1981.tb10300.x
  9. J. Am. Ceram. Soc. v.64 no.6 Grain-Size Dependence of Fracture Energy in Ceramics: Ⅱ R.W.Rice;S.W.Freiman;P.F.Becher https://doi.org/10.1111/j.1151-2916.1981.tb10301.x
  10. J. Am. Ceram. Soc. v.81 no.1 Transformation-Toughened Ceramic Mulilayers with Compositional Gradients J.Yoo;K.M.Cho;W.S.Bae;M.Cima;S.Suresh https://doi.org/10.1111/j.1151-2916.1998.tb02291.x
  11. J. Kor. Ceram. Soc. v.39 no.7 Dispersion of $ZrO_2$ by Copersipitation in $Al_2O_3/ZrO_2$ Ceramics M.J.Cho;J.L.Choi;J.K.Park;K.H.Hwang;J.K.Lee https://doi.org/10.4191/KCERS.2002.39.7.704
  12. Energy and Ceramics Strengthening and Toughening Models in Ceramics Based on $ZrO_2$ Inclusion N.Claussen;G.Petzow;P.Vincenzini(ed.)
  13. J. Kor. Ceram. Soc. v.21 no.2 Effect of Metastable Tetragonal $ZrO_2$ Phase on the Mechanical Properties in $Al_2O_3-ZrO_2$ System J.Y.Kim;K.H.Hwang;H.Kim
  14. J. Kor. Ceram. Soc. v.25 no.3 The Study on the Improvement of the Strength and the Thermal Shock Resistance of $Al_2O_3-ZrO_2$ Composites K.H.Hwang;W.T.Bae;M.D.Choi;K.U.Kim;H.Kim
  15. J. Kor. Ceram. Soc. v.29 no.7 The Thermal Shock behaviors of Y-TZP/Y-TZP-$Al_2O_3$ Composites having Dual Microstructure K.H.Hwang;E.H.Kim;H.Kim
  16. J. Kor. Ceram. Soc. v.38 no.5 Microstructure of Multi-Layer Ce-TZP/Ce-TZP-$Al_2O_3$ Composites I.C.Baek;K.H.Hwang;J.K.Lee
  17. Mater. Lett. v.53 Preparation of $Gd_2O_3-Doped ZrO_2$ by Polymeric Precursor Techniques E.N.S.Muccillo https://doi.org/10.1016/S0167-577X(01)00506-7
  18. J. Mater. Res. v.7 Modified Resin-Intermediate Processing of Perovskite Powder: Part 1: Optimization of Polymeric Precursors L.Tai;P.A.Lessing https://doi.org/10.1557/JMR.1992.0502