DOI QR코드

DOI QR Code

Microstructures and Mechanical Properties of HAp-Ag and HAp-ZrO2Composites Prepared by SPS

SPS에 의해 제조된 HAP-Ag, HAP-ZrO2 복합체의 미세조직 및 기계적 특성

  • Shin, Na-Young (School of Advanced Materials Engineering, Kongju National University) ;
  • Oh, Ik-Hyun (School of Advanced Materials Engineering, Kongju National University) ;
  • Lee, Hee-Jung (School of Advanced Materials Engineering, Kongju National University) ;
  • Shin, Seung-Yong (Korea Institute of Industrial Technolog) ;
  • Lee, Hae-Hyung (School of Dentistry, Dankook University) ;
  • Lee, Byong-Taek (School of Advanced Materials Engineering, Kongju National University)
  • Published : 2004.04.01

Abstract

Microstructures and mechanical properties of SPSed monolithic HAp, HAp-Ag, and HAp-ZrO$_2$sintered bodies were investigated by the XRD, SEM, and TEM techniques. The nano-sized HAp powders were successfully synthesized by precipitation of Ca(NO$_3$)$_2$4$H_2O$ and (NH$_4$)HPO$_4$solution. In the HAp-Ag composite, the shrinkage cavities were observed at the interfaces between HAp and large sized Ag particles due to the mismatch of their thermal expansion coefficients. However, no found the defect at the interfaces between HAp and fine-sized Ag particles. In the HAp-ZrO$_2$composite. nano-sized ZrO$_2$particles were almost dispersed at the grain boundaries of HAp phase. The fracture toughness of HAp-Ag and HAp-ZrO$_2$ composites were increased due to the plastic deformation and phase transformation mechanisms of the dispersed fine Ag and ZrO$_2$phase in the HAp matrix, respectively.

SPS법에 의해 제조된 단상의 HAp, HAp-Ag 및 HAp-ZrO$_2$복합 소결체의 미세조직과 기계적 특성을 XRD, SEM, TEM에 의해 조사되었다. 나노크기의 HAp 분말은 Ca(No$_3$)$_2$$.$4$H_2O$과(NH$_4$)HPO$_4$용액을 하여 침전법에 의해 성공적으로 합성되었다. HAp-Ag 복합체에 존재하는 마이크론 크기의 Ag 입자와 HAp 계면에서는 두 상의 열평창계수의 차이로 인하여 수축공의 결함이 관찰되었다. 그러나 나노크기의 Ag의 경우 계면에서의 결함은 관찰되지 않았다. HAp-ZrO$_2$ 복합체의 경우 나노크기의 ZrO$_2$입자들은 HAp 상의 결정립계에 대부분 분산되었다. HAp-Ag 및 HAp-ZrO$_2$ 복합체의 상대밀도와 파괴인성은 각각 HAp 기지에 분산된 미분의 Ag 및 ZrO$_2$상의 소성변형 및 상변태 인성기구에 의해 증가하였다.

Keywords

References

  1. J. Am. Ceram. Soc. v.81 no.7 Bioceramics L.L.Hench https://doi.org/10.1111/j.1151-2916.1998.tb02540.x
  2. J. Mater. Res. v.13 no.1 Processing and Properties of Hydroxyapatile-Based Biomaterials for Use as Hard-Tissue Replacement Implants W.Suchanek;M.Yoshimura https://doi.org/10.1557/JMR.1998.0015
  3. J. Mater. Res. v.16 no.5 Mechanochemical-Hydrothermal Preparation of Crystalline Hydroxyapatite Powders at Room-Temperature P.Shuk;W.L.Suchanek;T.Hao;E.Gulliver https://doi.org/10.1557/JMR.2001.0170
  4. J. Kor. Ceram. Soc. v.28 no.11 Effect of pH on the Synthesis of Hydroxyapatite S.R.Kim;B.M.Lee;Y.K.Park
  5. J. Kor. Ceram. Soc. v.36 no.12 Microstructure and Mechanical Strength of Hardened Paste of Hydroxyapatite Cement Containing Whisker Phaste Y.D.Son;T.W.Song
  6. J. Cryst. Growth v.254 no.3;4 Crystallization Characteristics of Yttria-Stabilized Zirconia/Hydroxyapatite Composite Nanopowder Y.M.Sung;D.H.Kim https://doi.org/10.1016/S0022-0248(03)01191-6
  7. J. Mater. Res. v.9 no.5 Crack Propagation and Deformation behavior of $Al_2O_3 24 vol%ZrO_2$ Composite Studied by Transmission Electron Microscopy B.T.Lee;K.HirAga https://doi.org/10.1557/JMR.1994.1199
  8. J. Am. Ceram. Soc. v.74 no.2 Microstructural Design of Toughened Ceramics P.F.Becher https://doi.org/10.1111/j.1151-2916.1991.tb06872.x
  9. J. Eur. Ceram. Soc. v.15 no.4 Toughening and Strengthening of Alumina with Silver Inclusions W.B.Chou;W.H.Tuan https://doi.org/10.1016/0955-2219(95)90351-I
  10. J. Eur. Ceram. Soc. v.21 no.16 Toughening Alumina with Silver and Zirconia Inclusions R.Z.Chen;W.H.Tuan https://doi.org/10.1016/S0955-2219(01)00230-8
  11. Biomaterials v.24 no.6 Fabrication of $HApZrO_2$(3Y) Nanocomposite by SPS W.Li;L.GaO https://doi.org/10.1016/S0142-9612(02)00428-3
  12. Otsu. v.499 Proceedings of the 9th International Symposium on Ceramics in Medicine T.Murakami;H.Higaki;S.Doi
  13. J. Kor. Ceram. Soc. v.30 no.9 A Study on the Hydroxyapatite-Zirconia Composite Bioceramics J.P.Lee;H.K.Choi;J.T.Song;S.H.Choi
  14. Biomaterials v.21 Electrodeposition of Hydroxyapatite Coatings in Basic Conditions M.Manso;C.Jimenez;C.Morant;P.Herrero;J.M.Martinez Duart https://doi.org/10.1016/S0142-9612(00)00061-2
  15. Mater. Sci. and Eng. v.22 Various Ca/P Ratio of Thin Calcium Phosphate Films I.S.Lee;C.N.Whang;H.E.Kim;J.C.Park;J.H.Song;S.R.Kim https://doi.org/10.1016/S0928-4931(02)00107-8
  16. Biomaterials v.19 no.22 Plasma-Sprayed Hydroxyapatite Coating on Titanium Substrates. Part 1: Mechanical Properties and Residual Stress Levels Y.C.Tsui;C.Doyle;T.W.Clyne https://doi.org/10.1016/S0142-9612(98)00103-3
  17. Biomaterials v.17 no.5 Addressing Processing Problems Associated with Plasma Spraying of Hydroxyapatite Coatings P.Cheang;K.A.Khor https://doi.org/10.1016/0142-9612(96)82729-3
  18. Biomaterials v.16 no.5 Sintering Effects on the Strength of Hydroxyapatite A.J.Ruys;M.Wei;C.C.Sorrell;M.R.Dickson;A.Brandwood;B.K.Milthorpe https://doi.org/10.1016/0142-9612(95)98859-C