The Korean Communications
in Statistics Vol. 11 No. 1, 2004
pp. 1-12

Centralization of Yates’ End Corrections Method?)
Hyuk Joo Kim?2)

Abstract

In this paper, Yates’ end corrections method is centralized to estimate the mean of
a population which has a linear trend in the case of % (the reciprocal of the sampling

fraction) even. The efficiency of the resultant method is compared with that of
existing methods.

Keywords : linear trend, centered systematic sampling, end corrections, infinite
superpopulation model

1. Introduction

It is often of interest to estimate the mean of a statistical population. Suppose that the
population has an increasing or decreasing linear trend. It is well known that systematic
sampling is efficient in such a case. Systematic sampling includes ordinary systematic
sampling(OSS), centered systematic sampling(CSS), balanced systematic sampling(BSS) and
modified systematic sampling(MSS). CSS(Madow(1953)), as the name implies, comes from the
centralization of OSS. BSS(Sethi(1965) and Murthy(1967)) and MSS(Singh et al.(1968)) are
sampling methods made by giving some modifications to OSS. CSS, BSS and MSS were
found to be more efficient than OSS. Kim(1985) proposed centered balanced systematic
sampling(CBSS) and centered modified systematic sampling(CMSS). These two sampling
methods, obtained by centralizing BSS and MSS respectively, turned out to be more efficient
than BSS and MSS when n(the sample size) is an odd integer and kA(the reciprocal of the
sampling fraction) is an even integer.

On the other hand,vYates(1948) proposed a method called end corrections(EC) method. This
involves the same sampling method as OSS. But the population mean is estimated by a
weighted mean, not by the simple mean, of the sample values. This method was found to be
more efficient than OSS as the linear trend in the population becomes stronger.

In this paper, we apply the concept of centralization to Yates’ EC method. So the resultant
method is obtained by using the same technique as in EC for the sample selected by CSS.
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2. Centralization of end corrections

Let N and #» denote the population size and the sample size, respectively. k= N/zn is
supposed to be an integer. We denote the N units of the population as U;, U,, -, Uy The
population is partitioned into £ clusters S;,S;,*,S,, where the ith cluster S; is defined
by

Si={UisG-1w:7=1,2,,0}.(i=1,2,, k)

Throughout this paper the following notation will be used:
v; : value for the zth unit in the population (i=1,2,+,N)

_ N
Y= -11\7 gly,- : population mean to be estimated

v ; * value for the jth unit in S; (1=1,2,,k; j=1,2,--,n),

that is, ¥ ;=¥ ,;¢(-1r

n

Y= —’12 ¥ 4 - mean for the units in S;(¢=1,2,--, k)

1=

Let us briefly review Yates’ EC. A sample of size # is drawn by OSS, that is, one of
Si,Sy,", Sy is selected with respective probability 1/ k. If the selected cluster is S; then

A, 2i—k—1 1 2i—k—1 .
n+ 2k(n—1) and " 2K n—1) to the first

and the last units in the sample respectively instead of the usual weight 1/#, that is, the
estimator of Y is

'Y is estimated by giving the weights

_J*Ec=§,-+—%2—(_,{’%_1%'(yﬂ—y,-,,). (2.1)
Just as CSS was obtained by centralizing OSS, a new method can be obtained by
centralizing EC. So the resultant method consists of drawing a sample of size » by CSS and
estimating the population mean Y using EC. The procedure is described specifically as
follows. If % is odd, then S (441) is selected as a sample with probability one and Y is
estimated by ¥ (k+1)/2, that is, the simple sample mean. So the method is the same as CSS
in this case. If % is even, either S5 or S,54; is selected with equal probability. If .S .
is selected, Y is estimated by

}’ 75/2—_— Y2~ m()’ 2,1°Y k/z,,,) . (2.2)

H S y94, is selected, then 'Y is estimated by
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Y - 1
Yire1 =Yzt 2k(n—1) (v k/2+l,1—yk/2+l,n)- (2.3)

Let us denote the method described above as CEC and the resultant estimator of Y as

y cec- Then it is obvious that the bias and the mean square error of y cec are as follows:
Bz'as(} CEC) = -%_ ( —y 2/2 + ;’ ‘k/2+1) -Y (2.4)

MSE(Y co) =5 (3= D+ 3lpr— DI, 25)

3. Expected bias and expected mean square error of the estimator

In this section, we will derive the expected bias and the expected mean square error of
y cec by using the infinite superpopulation model. This model, due to Cochran(1946), regards

the finite population as a sample drawn from an infinite superpopulation. First, as a general
case, we set up the model as

yi=#i+ei (i=1’21."’N)’ (31)
where 4; is a function of ¢ and the random error e has properties
E(e;)=0,E(e%) =%, E( e,e;)=0(i+j). The operator E denotes the expectation over the

infinite superpopulation.

From now on, with regard to ¢ and e the same style of notation as adopted for y will be
used. That is

B = _11\7,251#"’

Hii = Bitv(G-Des
n

;i = fz‘:lﬂij»

The following theorem is important in evaluating the efficiency of ; cec- Since CEC is the

and so on.

same as CSS when £ is an odd number, it is sufficient to consider only the case when £ is
an even number from now on.

Theorem 3.1. Under the model expressed as (3.1), the expected bias and the expected mean

square error of y cgc for k even are as follows:

EBias(y cEd) = % {n K2 —Z—E(_nl——l) (2 21— 1 b2, ) (3.2)

+—l; k2+1 + 2k(n1- 1) (¢ k2+1,17 # k/2+1,n)}_—/2,
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EMSE(y cxo)

= —%‘ {Ct o= 1)** e k/2+1—;)2}_—l—2k(n_ D (it o= 1)K k21— # b2, )
+ 2k(nl— 1‘)’(2 k/2+1_7‘)(ﬂ k/2+1.1_#k/2+1,n) (33)
+ 8 (n—1)% {(t 1= 2w, ) ? + (8 11— 2 21, )7
o d_ 1
s TRl iy O
Proof. (3.2) is derived by straightforward calculation. As for (3.3), substituting (2.2) and (2.3)
into (2.5), we have

MSE(Y o)

= %‘ [{(y k/z——Y)—mljl—) (¥ 21— Y w2, WY
+{(y k/2+1—_Y)+zT(nl:‘1_)‘(yk/z+1.1_yk/2+1.n)}2]
= —%‘ {(y = VE+(y k/z+1——1’)2}—m(_3’ M2— Y)Y aj21= ¥ a2, )
+m(y W21~ Y kzn)
+m(_y k/2+1_—17)(3’k/2+1.1_yk/z+1,n)

1
+ 8E(n—1)2 (y k/2+1.1"3’k/2+1,n)2-

Taking expectation over the infinite superpopulation and using (3.1), we have the following
(for i=Fk/2,R/2+1):

E{(y;,— 1)}

B~ +(e— )
(#i— ) +E{(e;— €)%} B
(pi— )+ E(e?)—2E(e;e)+ E(e?)
(TN O . &, O

= (#'__#)2_*_ n 2 N+ N

= (u-w+AL -4,

f

I

E{(y,~ N(ya~yw))} = EH(gi—w+(e,— dH(p g —p i)+ (eg—e )]

= (ﬁ;_z)(ﬂ a0 M ,~,,)+E{(E,-—_e)(e 1€ ,',,)}

= (pi—p)ea— 1,

(since the second term is easily shown to be zero)

E{(y 1=y )% = El{(g 13—z )+ (eg—e )]
= (ga—u)?+E{(e;—e )%
= (ga—p)+20%.
(3.3) is derived by using the above formulas.
Now let us consider the case when the population has a linear trend. The linear trend is
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represented by pg;=a+ b, where a and b are constants with b#(0. Thus the assumed
model is
yi=a+bite;, (i=1,2,-,N). (34)
In this case, we get the following formulas:
by = at+dli+(G—1k}
Loy = a+(—§-)kn

Bapar = o+ (B +2)
u= a+(7b)(kn+1).

Substituting these formulas into (3.2) and (3.3) gives the following theorem:

Theorem 3.2. For a population having a linear trend represented by (3.4), the expected

bias and the expected mean square error of ¥ cec for k even are as follows:
EBzas(} CEC) =0 , (3.5

o

— (L _lyg o
EMSE(y ¢po)=0( n N)+ 2B (n—1)% °

(3.6)

4. Comparison of efficiency with existing methods

4.1 Comparison with methods using simple mean of the sample
Let us compare the efficiency of CEC with the methods that draw a sample by SRS, SSRS,

0SS, CSS, BSS, MSS, CBSS, CMSS, CBS, CMS and TES, and estimate 'Y with the simple
sample mean. Here SRS represents simple random sampling, SSRS represents stratified simple
random sampling with one unit per stratum, and CBS, CMS and TES represent centered
balanced sampling, centered modified sampling and two-end sampling, respectively. The latter
three sampling methods are due to Fountain and Pathak(1989). SSRS is such that the jth
stratum (j=1,2,---,#) consists of units Ujt+G-pe Usy—1w > Uj. From each

stratum one unit is éelected at random. Since all strata are of equal size and one unit is

selected from each stratum, the estimator of Y simplifies to the sample mean. Bellhouse and
Rao(1975) also gave discussions on comparisons of the performances of 0SS, CSS, BSS, MSS
and EC.

When £ is an even number, the common form of the expected mean square error of the

estimators for Y by those methods is
EMSE(Y) =A(L— )+ 824(n, b, 4.1)

where A, k) is a function of #» and k. The specifications for each method are as follows:
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(nk+}%(k-— D (SRS)
£~ ]
12 (SSRS)
*5t (0SS)
An k)= —1]1" (CSS) 2
0 , (n: even) (BSS, MSS, CBSS, CMSS, CBS, CMS, TES)
—kﬁ}} (n: odd) (BSS, MSS)
—4}7 (n: odd) (CBSS, CMSS, CBS, CMS, TES)

Efficiency of CEC and these methods can be compared using (3.6), (4.1) and (4.2). The
necessary and sufficient condition for EMSE(Y cgo) to be less than EMSE(Y) is
<20 (n—1)2 f(n, b). (4.3)

This means that CEC becomes especially efficient as compared with these methods as %, the
variance of the random error term in (3.3), becomes smalier.

Of course it should be noted that when = is even, An,k) =0 for BSS, MSS, CBSS,
CMSS, CBS, CMS and TES, so that CEC is less efficient than these seven methods. Hence
CEC is worth using when £ is even and # is odd.

As a numerical example, consider the case when N=500,7=25,k£=20, and the slope of
the linear trend is 4=0.8. Then the conditions for CEC to be more efficient than (i) SRS,
(i) OSS, (iii) SSRS, (iv) CSS, (v) BSS and MSS, (vi) CBSS, CMSS, CBS, CMS and TES
are, respectively, that (i) ¢®< 233,938,944, Gi) %< 9,805,824, (i) 6%< 392,232.96, (iv)
02 < 73,728, (v) ¢%<15,689.3184, and (vi) 0°<117.9648.

Breidt(1995) studied Markov chain designs, a wide class of methods for one—per-stratum
selection from a finite population. Given a doubly stochastic transition probability matrix P, a
Markov chain sample is given by

S={Ug;, Usry» U (n-1p+ 2}
where R;,--, R, is the Markov chain defined by P and R, is uniformly distributed over

{1,2,--,k}. Breidt obtained the result that in estimating Y under the linear trend model
(34), any Markov chain design has

EMSEG w= L = )+ (L) vad B R). (44)

The Markov chain designs include SSRS, 0SS, BSS and MSS as special cases. From (3.6)
and (4.4) we see that the condition for CEC to be more efficient than a Markov chain design
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is that
212 _ 1\2 n
o2 20k L_Ll_nrzl V ucC ;R")' (4.5)

In (45), V 4 §1Ri) denotes the variance of ,EIR" under the given Markov chain design.

For example,

n ( 2_1)
Vsszes( ;lRi)': % k12 ’

" 2022 _
VOSS( lel_)=L(%__l_l

V Bss( §1R D=V ys{ ;1 R)= 0 for n even,

2 __
k121 for » odd.

4.2 Comparison with methods using weighted mean of the sample

The following methods estimate Y with a weighted mean of the sample values.
(1) End corrections method (EC) (Yates, 1948)
_ 2
EMSE(y EC)=02(—}7—71V)+—6(I§(—;_U§ 46)
(2) Method using BSS and interpolation (BI) (Kim, 2000b)
(3) Method using BSS, interpolation and extrapolation (BIE) (Kim, 1999)
(4) Method using MSS and interpolation (MI) (Kim, 1998)
(5) Method using MSS, interpolation and extrapolation (MIE) (Kim and Oh, 2002)
(6) Method using CBSS and interpolation (CBI) (Kim and Seok, 2000)
(7) Method using CBSS, interpolation and extrapolation (CBIE) (Kim, 2000a)
(8) Method using CMSS and interpolation (CMI) (Kim and Choi, 2002)
(9) Method using CMSS, interpolation and extrapolation (CMIE) (Kim and Jung, 2002)

Methods (2) through (9) are defined for the case of %&£ even and # odd. The common form

of EMSE(T’) resulting from these methods is
EMSE(Y) =0*(-= = %) +oe(n. ), @4

where g(n,k) is a function of # and A. So EMSE(‘I.’) does not depend on b, the slope of
the linear trend. Details of the form of g{(#, k) for methods (2) through (9) are as follows:
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—2-}27(1—4Ak+2k3k) (BI)
Enl—z(l-—r—ZIn2+Ck) (BIE)
T (4-124,+64B,) (MD)
W 1 (CBI)
vl G—12 " (k+1)2} (CBIE)
Z}? 7]e7+ (k+1)? (CMD
77112-,;5 (CMIE)

where

A=k +d) - vk
B,= —%—{W“)(k +% ) — w‘”(k—;L )}

_ k[ 2_o g 1.\_ 1l
Co=E{w 200k +1)} - v+ $)
Px) = _ddx— In(x) (x>0) : the polygamma function
N(x) = fowt"'le"dt (x>0) : the gamma function

7O = L g

y=0.577215-:---- : the Euler constant
From (3.6) and (4.6) we obtain

- _ 2_
EMSE(y pc) — EMSE(y cgo) = ‘é(klg(—nf)ﬁzz‘ .

This is always positive if & is an even number greater than 2. Hence CEC is more efficient

than EC when &) 2. It is obvious that CEC and EC are the same methods when k=2.
Tables 1, 2 and 3 present values of EMSE(‘?)/ ¢® by methods (1) through (9) and CEC

for some values of # in the case of £=8,12,20. As we see from these tables, the five
methods, namely, CEC, CBI, CBIE, CMI and CMIE, are more efficient than EC, BI, BIE, MI
and MIE (although the differences become smaller as # increases with % fixed). This fact



Centralization of Yates’ End Corrections Method 9

tells us that centralization is a useful tool when we estimate the mean of a population which
has a linear trend.

In the tables the values of 1/#—1/N are also presented for given % and =
0°(1/n—1/N) is the value of EMSE ("Y) resulting from CSS when £ is odd, and from

BSS and MSS when # is even. CSS when £ is odd, and BSS and MSS when # is even,
are known as completely trend-free sampling methods. Since there is little difference between

EMSE (v cgc)/d® and 1/n—1/N as we see from the tables, we can say that CEC, together

with CBI, CBIE, CMI and CMIE, is nearly optimal for estimating the mean of a population
with a linear trend.

Table 1: Values of EMSE( Y)/o® when k=8

n | EC BI BIE MI | MIE | CBI | CBIE | CMI |CMIE | CEC

5 | .1853 | .1773 | .3065 | .1794 | .1816 | .1752 | .1753 | .1753 | .1753 | .1755 | .1750
25 | .0353 | 0351 | .0403 | .0352 | .0353 | .0350 | .0350 | .0350 | .0350 | .0350 | .0350
55 | 0160 | .0159 | .0170 | .0159 | .0160 | .0159 | .0159 | .0159 | .0159 | .0159 | .0159
105] .0083 | .0083 | .0086 | .0083 | .0083 | .0083 | .0083 | .0083 | .0083 | .0083 | .0083

-
t
b

Table 2: Values of EMSE( Y)/o® when k=12

n| EC | BI | BIE | MI | MIE | CBI |CBIE | CMI |CMIE | CEC |L--}

n
5 1.1936 | .1855 | .4054 | .1877 | .1899 | .1835 | .1835 | .1835 | .1835 | .1836 | .1833
25 | 0370 | .0368 | .0456 | .0369 | .0370 | 0367 | .0367 | .0367 | .0367 | .0367 | .0367
55 | .0168 | .0167 | .0185 | .0167 | .0168 | .0167 | .0167 | .0167 | .0167 | .0167 | .0167
105 .0087 | .0087 | .0092 | .0087 | .0087 | .0087 | .0087 | .0087 | .0087 | .0087 | .0087

Table 3: Values of EMSE('.f’)/ > when k=20

n| EC | Bl | BIE | MI | MIE | CBL | CBIE | CMI |CMIE | CEC |+--}

5 [.2004 | 1923 | 5993 | .1945 | .1967 | .1900 | .1901 | .1900 | .1901 | .1901 | .1900
25 | .0383 | .0381 | .0544 | .0382 | .0383 | .0380 | .0380 | .0380 | .0380 | .0380 | .0380
55 | 0174 | 0173 | .0207 | 0173 | .0174 | .0173 | 0173 | .0173 | .0173 | .0173 | .0173
105] .0090 | .0090 | .0100 [ .0090 | .0090 | .0090 | .0090 | .0090 | .0090 | .0090 | .0090
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4.3 A numerical example
Consider the following artificial population of size N=36. A sample of size #=9 is to be
drawn from this population.

46 4 42 39 40 3B 37 3B 3P 3
3% 32 30 34 21 21 24 23 B 20
23 19 18 18 17 13 15 13 16 15
14 10 11 12 9 8

The mean of this population is Y =25.0278. This population is exhibiting a decreasing linear

trend. The mean square errors of the estimators of Y resulting from existing methods are

MSE(y grs)=10.2928, MSE(y ssps) = 0.4205, MSE(y os5)=1.9282,
MSE(y ¢s5)=0.2693, MSE(y ps)=0.1566, MSE(y y59)=0.0394,
MSE(y cgss)=10.0965, MSE(y cyss) =0.0471, MSE(y cgs)=0.3233,
MSE(y ¢ys)=0.1088, MSE(y 155)=0.9576, MSE(y 50)=0.0995,
MSE(y 5)=0.2610, MSE(y pp)=0.1711, MSE(y 3)=0.0544,
MSE(y 4z)=0.0776, MSE(y ¢ =0.1267, MSE(y cp)=0.1323,
MSE(y o) =0.0313, MSE(y cye) = 0.0256.

On the other hand, if we estimate the population mean by using the method CEC, Yis
estimated as one of the following two values:

¥3=25.1667,
v 5=25.1823.

Hence the mean square error of our estimator ¥ cgc is obtained as

MSE(y cxc) = 0.0216.
This shows that CEC is the most efficient of the methods considered.

5. Concluding remarks

When a population under consideration has a linear trend, the population parameter can be
efficiently estimated by using well-devised methods. In this paper, a new method denoted by
CEC has been suggested to estimate the mean of a population which has a linear trend. When
k is an odd number, CEC has little meaning because it is the same as CSS, which, resulting
in a nonrandom sample, is not appropriate to be used in practice. So CEC is actually
suggested for use in the case of % even.

Finally, it is to be noted that the expected mean square errors in equations such as (3.6),
(4.1), (46) and (47) are not anticipated mean square errors that were obtained by a
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model-assisted method, but they were obtained by using a model-based method.
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