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Abstract

Since the introduction of DNA microarray, a revolutionary high through-put
biological technology, a lot of papers have been published to deal with the analyses of
the gene expression data from the microarray. In this paper we review most papers
relevant to the cDNA microarray data, classify them in statistical methods’ point of
view, and present some statistical. methods deserving consideration and future study.
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1. INTRODUCTION

DNA microarray technology, cDNA microarray(Schena et al 1995) or  oligonucleotide
chips(Lockhart et al. 1996), made it possible to monitor gene expression levels on a genomic
scale. Since the introduction of high through-put technology, a lot of papers dealing with the
analyses of gene expression data from the microarray have been published during the last 6-7
years. Now, it is a good time to review, summarise, and classify the statistical methods used
in analysing gene expression data so far. Of course there were review papers in this area.
For example, Bassett et al. (1999) argued the necessity for universal standards to make the
data more suitable for comparative analysis and for inter—operability with other information
resources. Duggan et al. (1999) reviewed technical aspects of ¢cDNA micoarrays. On the other
hand, Brazma and Vilo(2000) gave a mini-review mainly on the clustering analysis. Smyth et
al. (2002) made an excellent review on statistical issues in gene expression data. Nguyen et
al. (2002) focused on biological and technological aspects in DNA microarray experiments.
Recently, Sebastiani et al (2003) reviewed many statistical issues in functional genomics. In
this paper we make more extensive and updated review on ¢cDNA microarray data, and cover
almost all the statistical tools used in relevant papers so far. Also, we try to make this paper
easy and self-contained, so that statisticians without prior knowledge on biology or biologists
with few statistical backgrounds can understand what’'s going on in this area. Even though
many statistical methods for cDNA microarray data are not available to the oligonucleotide
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array data, we focus on the statistical methods for ¢cDNA microarray data analysis in this
papaer.

The central dogma(DNA replication, RNA transcription, and RNA translation) and the
process of producing gene expression data are introduced in Section 2. Section 3 gives the
details of generating gene expression data such as image processing, normalization, and two
possible types of gene expression data. In Section 4 a lot of statistical methods which are
applied to the analysis of gene expression data are introduced. Specifically they are parametric
modelling, t-type statistics, issues in multiple testing, analysis of variance model, singular
values decomposition, clustering, and discrimination. Finally, some remarks are given in
Section 5.

2. BIOLOGICAL BACKGROUNDS

2.1 Gene, mRNA, and cDNA

Every organism has a genome containing biological information which is needed to maintain
and construct that organism. Genomes are made of DNA(deoxyribonucleic acid). DNA is
polymeric molecules made of nucleotides. Each nucleotide has three parts: a sugar, a phospate
group, and a base. The four bases in DNA are adenine(A), cytosine(C), guanine(G), and
thymine(T). DNA in living cells is double-stranded, and has double helix form. In the two
strands, the base-pairing rules are that A pairs with T and G pairs with C. The two DNA
molecules in a double helix are called complementary sequences to each other. '

The biological information is contained in a gene which consists of a segment of DNA. The
information contained in a gene is read by proteins and this process consists of two stages:
transcription and translation - key process of central dogma(DNA replication, transcription,
and translation). During transcription DNA is transcribed into mRNA(messenger ribonucleic
acid), RNA copy of a gene, and during translation mRNA is translated to produce a protein.
These series of biochemical reactions(gene -> mRNA -> protein) are called gene expression,
and the corresponding genome sciences are often called genomics, transcriptomics, and
proteomics, respectively. Therefore, the abundance of protein is highly dependent on the
abundance of mRNA. While it is quite difficult to measure the abundance of protein, it is
relatively easy to measure the abundance of mRNA by the method of DNA microarray. Hence
measurement of mRNA level gives gene expression data.

2.2 Microarrays
2.2.1 Oligonucleotide Array

Oligonucleotide array, developed by Affymetrix GeneChip (Lockhart et al 1996), has recently
been used a lot in genomic research. There are usually 20 probe pairs to interrogate each
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gene, and each probe pair has a perfect match(pm) and mismatch(mm). The pm probe is
made to match a subsequence of the gene(usually 25 bases long), and the mm probe is the
same as pm except that the middle base is changed to its complement. Then, the average of
the pm-mm differences for 20 probe pairs is used as a gene expression for the gene of
interest. For the details of oligonucleotide array, see Lipshutz et al (1999).

2.2.2 cDNA Microarray

cDNA microarray, developed by Brown Lab. of Stanford University (Schena et al. 1995), is
a glass microarray slide, onto which tens of thousands of single-stranded DNA sequences are
attached using a robotic arrayer at fixed spots. The main purpose of ¢cDNA microarray is to
compare mRNA abundance, which determines the abundance of a specific protein, in two
different samples. Two different samples are usually called targets(or a sample and a control).
Two samples are then reversed and transcribed into cDNA, labeled using different fluorescent
dyes(red dye Cy5 for sample and green dye Cy3 for control). Both samples are mixed and
washed over the microarray, and then hybridized with the arrayed DNA sequence, called
probe. Finally, the relative abundance of the hybridized RNA is excited by a laser. The idea
of hybridization was already developed in 1970s, and was used, for example, in RNA dot blot
and Southern hybridization. At that time nylon or nitrocellulose are used instead of glass.
cDNA microarray has much higher density than others and is the most powerful technology
so far. The preparation of cDNA microarray must be carefully done depending on the study
of interests. The researchers have to make careful decision, for example, on the number of
slides, how to hybridize, choice of reference sample, etc.

3. GENERATION OF GENE EXPRESSION DATA

3.1 Gene Expression Profiles

We can build up gene expression profiles under various conditions, for example, under
different environmental stress conditions, under different tumor types from cancer patients, and
under normal and abnormal cells. Therefore the gene expression profiles can be written in a
matrix form with rows representing genes, columns representing samples corresponding to
various conditions described above. This gene expression matrix is quite different from the
usual matrix appeared in general situations in the sense that the dimension of rows( p) is so
big, say, thousands, and that of columns( ) is relatively very small, say, tens. This "tall and
skinny” matrix, therefore, has so called "small n, large p” problem.

3.2 Image Processing

The raw data produced by microarrays are monochrome images, so that they are not ready
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to use until the images are transformed into real values. This transformation process is called
image processing. This process is quite complicated and full description of it is very lengthy,
and therefore we describe the image process very briefly. The image process mainly consists
of 3 parts: addressing, segmentation, and intensity extraction. Addressing is identification of
the location of each spot. The segmentation procedure is the classification of pixels as either
foreground or background. Foreground is a spot of interest, and background is contribution
which is not due to the hybridization. Finally, the intensity extraction step is computing
intensities for each spot. The foreground intensity is mean, median, or mode of the pixel
intensities within the spot, and there are two ways of computing background intensities;
perimeter method, computing median of the pixel intensities in a region surrounding the spot ,
and local valley method, computing median of the pixel intensities in the local valleys in
between spots. There are a lot of methods which are variations of these two methods. See
Smyth et al. (2002) for details. The final fluorescence of a spot is given by the background
correction, subtracting background intensities from the foreground intensities. There are
possibilities that the corrected intensities are negative values. This phenomenon can cause
reducing the quality and reliability of imaging process, and deserves further studies.

Chen et al. (1997) proposed a pixel selection method in cDNA microarray data based on the
Mann-Whitney test, and Schadt et al (2000) discussed the process of image analysis,
background correction, and normalization problem in oligonucleotide array. Yang et al (2002)
reviewed existing image analysis methods and proposed a new image processing method, and
implemented it in a software package named Spot. Kooperberg et al (2002) noted that the
standard background correction, foreground intensity - back-ground intensity, can cause
problems when the foreground intensity is low, and proposed a Bayesian approach for
background correction. Also, Chen et al. (2002) suggested improved version of image analysis
in Chen et al (1997). On the other hand, Bozinov and Rahnenfuhrer (2002) introduced a new
method for intensity assessment of gene spots based on clustering, and argued that their
approach performed superior to other existing methods and highly robust against various types
of artifacts. Recently, Edwards (2003) suggested a smooth correction for the negative
background-corrected intensity.

Let R and G be the background corrected red and green intensities, respectively. Then,
the most intuitive statistic for the relative red intensity to the green intensity is the ratio of
Rto G, ie, T=R/G. T could be greater or less than 1 depending on the relative intensity

of R to G, and either case is referred to induced ( T 1) or repressed ( T¢<1). Discussions
based on T will be introduced in section 4.1. But, most authors prefer log-transformed value
X=1log,(R/G) to T as raw data, and Smyth et al (2002) noted some reasons for
log-transformation. The base 2 is used for convenience and interpretability. In fact, most of
statistical analyses on gene expression profiles are based on data X.
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3.3 Normalization

It is not guaranteed that intensities of two dyes are always equal, and it is known that
often the intensities are higher for the green dye. Also, if multiple slides are used, there are
variations between slides. Further, we cannot avoid biological variations in each RNA extract.
Other variations could result from spatial positions of the slide, the process of hybridization,
and other microarray technology. To adjust these biases normalization is necessary before
carrying out further analysis. If a standard subset of control spots, called housekeeping genes,
is available, they can be used in normalization. Schadt et al (2002) suggested to use invariant
genes, genes whose ranks remain the same for both the red and green intensities, for
normalization. But it is difficult to choose housekeeping genes or invariant genes. Most of
normalization methods suggested so far are global normalization by subtracting a constant ¢
from the log-ratio value X. (Chen et al 1997, Kerr et al. 2000). On the other hand, Yang et
al. (2001) proposed intensity-dependent ¢ by using the nonparametric regression such as
LOWESS. They also discussed normalization problem on between-slide variations. Tseng et
al. (2001) showed that normalization between fluorescent labels is necessary and that the
normalization is slide dependent and nonlinear. They used residuals after normalization to
provide prior information on variance components in the analysis of comparative experiments.
Coombes et al(2002) explored various sources of variation in microarray data using
high-density ¢cDNA membrane array. By using the non-linear method Wilson et al. (2003)
suggested two normalization method, and by using discrimination method Benito et al (2004)
adjusted systematic microarray data biases, and called it distance weighted discrimination.

3.4 Two Types of Gene Expression Data

Let X;=log,(R;/G;),i=1,,p;j=1,,n be the gene expression data for the i-th
gene and the j-th sample, then X=(X;) is pxn gene expression matrix. Sometimes we
have additional information for each sample y;j=1,-, % to X . For example, y; could be
death or survival(binary), tumor categories(polytomous), or survival times(continuous). If only
X; are available, it is called unsupervised, and if both X and y; are available, it is called

supervised. The terms, supervised and unsupervised, are usually used in the literature of
machine learning. Typical statistical methods for analyzing unsupervised data are clustering
analysis and singular values decomposition. On the other hand, discriminant analysis is usually
used for the supervised data. The discriminant analysis entails class prediction
problem(classification and prediction). These methods will be discussed in detail in Section 4.

3.5 Frequently Quoted Datasets

So far a huge number of gene expression data are generated, and here we list frequently
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quoted data sets, with short explanation and available web site.

(1) Breast Cancer(Perou et al. 1999)
Four groups of human breast cancer (luminal A, luminal B/C, normal, basal /ERBB2);
5531 genes and 85 samples; http://genome-www.stanford.edu/sbcmp

(2) Leukemia (Golub et al. 1999)
Two types of acute leukemias (acute lymphoblastic leukemia(ALL) and acute myeloid
leukemia(AML)); 6817 genes and 72 samples(43 ALL(38 B-cell ALL, 9 T-cell ALL)and
25 AML); http://www.genome.wi.mit.edu/MPR

(3) Lymphoma (Alizadeh et al. 2000)
Three most prevalent adult lymphoid malignancies (chronic lymphocytic leukemia(CLL),
follicular lymphoma(FL), and diffuse large B-cell lymphoma (DLBCL)); 4682 genes and
81 samples (29 CLL, 9 FL, 43 DLBCL); http://genome-www.stanford.edu/lymphoma

(4) NCI60 (Ross et al. 2000)
60 cell lines from the National Cancer Institute’s anti-cancer drug screen; 5244 genes
and 61 samples (7 breast, 5 central nervous system, 7 colon, 6 leukemia, 8 melanoma, 9
non-small-cell-lung-carcinoma, 6 ovarian, 2 prostate, 9 renal, 1 unknown);
http://genome-www.stanford.edu/nci60

4. STATISTICAL METHODS

4.1 Parametric Modelling

One of the main goals in microarray data analysis is to determine whether gene expression
differs significantly for red and green fluorescent intensity levels. Then, the most intuitive
statistic for the gene expression is the ratio statistic 7= R/G or the log-transformed ratio
X=log ,(R/G), and the naive decision rule for detecting the significant gene is finding genes
with high or low values of the ratio statistic. This decision is called k-fold change method:
For T, if T>k or T<1l/k and for X, |X|>k However, the k-fold change method is not
desirable in the sense that the usual pattern of the gene expression data reveals that variance
for low intensities are much larger than that of high intensities. Therefore, the k-fold method,
not considering the dispersion aspect of intensities, is quite dangerous to use, and this fact
was noted by many authors.

Early works include studies of gene expression patterns in human cancerand in yeast during
metabolic shift from fermentation to respiration. The first statistical approach to the

microarray data analysis is done by Chen et al (1997). They assumed that R; and G are
independent and normally distributed with constant coefficient of variation, and derived
approximate density for the ratio statistic 7. Based on the density they suggested

confidence intervals for true ratio o and the maximum likelihood estimation of the coefficient
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of variation parameter. . On the other hand, Newton et al (2000) suggested a Bayesian
approach. First, they assumed that R and G follow independent gamma distribution with
common scale parameter. For the prior of scale parameter, they assumed common gamma
distribution, and obtained the Bayes estimator for the true ratio p. Based on the
oligonucleotide array, Ibrahim et al (2002) assumed log-normal distribution for the normalized
gene expression data and took normal and inverse gamma priors for the mean and variance
parameter, respectively. Chen et al (2002) noted that the constant coefficient of variation
assumption of Chen et al. (1997) is incorrect especially when the signal-to-noise ratio is low,
and refined their original results.

4.2 t-type statistics

Lee et al. (2000) noted the importance of replication in microarray gene expression analysis.
They argued that by pooling data from replicates a more reliable results can be provided
since any single microarray output is subject to substantial variability. As mentioned in
section 4.1, the use of k—fold change method is very dangerous because it does not consider
the dispersion. Therefore, if replicates are available, the easiest and simplest statistic for the

gene expression is {-statistic. First we consider the simplest case: one-sample with #
—_— n n —_—
replications. Let x;= leii /n and §= Zl(xi,-— x)%/(n—1) be the sample mean and
= f=

sample variance of the i-th gene, respectively, and let

Xi ‘=1,...,p

t.:—-—_, 7
Pose(x)

Dudoit et al. (2002) used a usual type of t-statistic, ie., they used s.e ( x;)=s; /Vn. But,
some authors noted that the usual t-statistic give too much weight for unusually small values

for s; while the k-fold change method give too much weight for unusually large values for
7,- regardless of s; In fact, some authors tried to attenuate the usual ¢-statistic by adding a
penalty term in s.e. (7,). Tusher et al (2001) and Efron et al (2001) suggested s.e.

(_;c_i)=a+ S /\/71 where a is a penalty term. Tusher et al (2001) chose a to minimize the

coefficient of variation of t values, and Efron et al (2001) suggested the 90th percentile of s
values as a by an empirical Bayes method. On the other hand, Lonnstedt and Speed(2002)

suggested s.e. (7,-)=V (a+ S%) /n using a parametric empirical Bayes approach. They

estimated a as a function of mean and variance of s? values.
It is not difficult to extend the above results to the two-sample case. Assume that the

microarray samples consist of treatment and control, and each has %, and #, replications,

respectively, where n=#n;+#xn, Let 7,: x T 762,' be the difference between treatment
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and control means, and let 321,- and s%; be the sample variance of treatment and control,

respectively. Dudoit et al (2002) used sum of each variance in estimating the standard error,
ie.,

t,'=
P,

n ny

while Tusher et al. (2001) used the pooled variance with the penalty term as

t;= b
a+tsy 1,1
n %

where §%,;= ((n;—1)s4;+ (ny,—1)s%)/(n,+n,—2) is the pooled variance and a a is penalty

term.
On the other hand, Wang and Ethier (2004) suggested a generalized likelihood ratio test to
identify differentially expressed genes, and showed that this test is more powerful than the

fold change method and #-test.
4.3 Multiple Testing Problem and Significance

One of difficult problems involved in microarray data is multiple testing. For example,
two-sample t-test might be used to test for significant evidence of differential expression of
every individual gene between two samples. Two-sample f-test for each gene with a Type 1
error of 5% will produce approximately .0bxm false positives, where m is the number of
hypotheses, i.e., the number of genes to be tested.

Table 1. Possible Outcomes from m Statistical Hypotheses

Do Not Reject Null _ Reject Null Total

Null is True u v m
Alternative is True T S m;
w R m

The most commonly used measure in multiple hypothesis testing is the family-wise error
rate (FWER, also called family-wise Type I error), which is the probability of at least one
error(false positive) over the collection of tests, ie, Pr(V =1). To achieve the FWER, one
of the best known method is Bonferroni’s correction, but as is well-known it is too
conservative. In fact, it controls each test at a/m for a given level of significance @ so that
the FWER is guaranteed to be less than or equal to @ A less conservative one is Sidak
procedure, but it still makes stringent requirements for the rejection of any one of the null
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hypothesis. These methods are guaranteed to control the level, however, the power is
relatively small. To overcome these disadvantages, some step—down methods, improving power
with the level preserving, such as Westfall and Young(1993)'s step-down method and
permutation method have been suggested. Shaffer(1995) made an excellent review on these
methods.

On the other hand, Benjamini and Hochberg(1995) introduced a new measure in multiple
testing. They introduced a measure called false discovery rate(FDR), the expected proportion
of errors committed by falsely rejecting null hypotheses. This concept is very appealing when
one is more interested in the rate of false positives among all rejected hypotheses rather than
the probability of making at least one Type I error. By using the notations given in Table 1,

FDR can be expressed as E [ £ IR >0)]. When R = 0, the FDR is set to 0. Benjamini and
R

Hochberg(1995) presented an algorithm based on p-values to control the level when the tests
are independent. Throughout the simulation study they showed that the FDR is less stringent
than the FWER, and is therefore more powerful. Benjamini and Yekutieli(2001) extended the
FDR to the dependent tests case, and Genovese and Wasserman{(2002) introduced a dual
quantity to the FDR, the false non-discovery rate(FNR) which is defined as the expected

proportion of the false negatives among not rejected hypotheses, ie, FNR=E [ —%,I(W >0)].

While the FDR is computed by the given level a, Storey(2001) suggested using positive false
discovery rate(pFDR), which is defined as pFDR=E [ —% | R >0]. He interpreted FDR as

“the rate that false discoveries occur” and pFDR as "the rate that discoveries are false”. He
gave a Bayesian interpretation of pFDR such that pFDR is equal to Pr(null is true | test
statistic is contained in the rejection region) which is so called "posterior Bayesian Type 1
error”. Storey(2002) discussed estimation issues about pFDR and compared between FDR and
pFDR. Also, Reiner, Yekutieli, and Bejamini (2003) suggested a procedure for identifying
differentially expressed genes using false discovery rate.

4.4 Cluster Analysis

44.1 Methods in Cluster Analysis

Cluster analysis is a very important and most widely used tool for unsupervised type data.
Cluster analysis partitions a set of objects into groups or clusters, and within each cluster
objects are supposed to be as similar to each other as possible in some sense. There are
many different clustering algorithms, but they can be classified into two basic types:
hierarchical clustering and non-hierarchical(or flat) clustering. A hierarchical clustering is a
hierarchy that each node means a subclass of its mother’s node. The tree of a hierarchical
clustering can be made either by bottom-up(starting with individual objects and grouping the
most similar ones) or top-down(starting with all the objects and dividing them into similar
groups). On the other hand, non-hierarchical clustering consists of a number of clusters and
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the relation between clusters is undetermined. K-means clustering is the simplest and the
best-known non-hierarchical clustering. K-means, where K is usually predetermined, is an
iterative algorithm that defines clusters by the mean of objects. First, we give a set of initial
clusters, and then repeat assigning each object to the cluster whose center is closest. After all
objects have been assigned, we calculate the mean of each cluster.

There are many other clustering methods which are versions of the hierarchical and
non-hierarchical clusterings. Self-organizing maps(SOMs), developed by Kohonen(1997), is
quite similar to K-means clustering, and it is well illustrated in Tamayo et al (1999).
Tibshirani ef al. (1999) investigated two-way clustering to simultaneously cluster both genes
and samples, and proposed a new method called gene shaving. Lazzeroni and Owen (2002)
suggested plaid models, a form of two-sided cluster analysis that allows clusters to overlap,
i.e., it allows a gene to be in more than one cluster or in none at all.

4.4.2 Applications of Cluster Analysis

Eisen et al (1998) seems to be the first paper applying clustering methods to identify
groups of co-regulated genes from two sets of data: a single time course of a canonical
model of the growth response in human cells and an aggregation of data from experiments on
the budding yeast S. cerevisiae. Also, Chu et al. (1998) explored assay changes of the budding
yeast during sporulation using the clustering method. Spellman et al. (1998) used DNA
microarray data from yeast cultures to create a comprehensive catalog of yeast genes whose
transcript levels vary periodically within the cell cycle.

Tamayo et al (1999) pointed out a number of shortcomings of hierarchical clustering,
K-means clustering, and Bayesian clustering, and advocated the use of SOMs in gene
expression data. They applied SOMs method to the gene expression data from hematopoietic
differentiation, and developed a computer package, GENECLUSTER, to produce and display
SOMs of gene expression data. Based on the hierarchical clustering Scherf et al (2000)
analyzed gene expression patterns for their relationship to drug sensitivity using NCI60 data
set. On the other hand, Kerr and Churchill (2001) applied bootstrapping to assess the stability
of results from a cluster analysis. Dougherty et al (2002) developed a congruency model to
analyze the inferential precision of clustering algorithms such as K-means, fuzzy C-means,
SOMs, and hierarchical clustering. Recently, Ding (2003) suggested two-way ordering to
select informative genes from unsupervised data, and applied it to gene expression data.

4.5 Classification

For the supervised type data, where responses are available in addition to the gene
expression matrix X, we can predict sample classes based on the data, and this problem is
usually called classification which can be also termed as "classification and class prediction”.

Let be x;=(x;,,x,) the gene expression profile of the j-th sample of the gene
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expression matrix X=(x;), and y; be the class label. Then, x; and y;, j=1,-, &

correspond to the predictor variable and the response, respectively. The classification step is
done by the learning data, data set with known class labels, and using the results of the
classification step the class prediction step is done by the test data (or validation data), data
with either class labels known or not. The method used in the classification step is called
classifier or predictor, and there are numerous classifiers. The classical classifiers are the
linear discriminant analysis(Fisher 1936), the nearest neighbor method(Fix and Hodges 1951),
and the classification trees(Breiman et al 1984). Also, in the field of machine learning, there
are aggregation methods such as bagging(Breiman 1996) and boosting(Freund and Schapire
1997), neural networks(Ripley 1996), and support vector machine(Vapnik 1998).

Using the hierarchical clustering algorithm Perou et al (1999) classified breast carcinomas
based on variations in gene expression patterns derived from cDNA microarrays. Alizadeh et
al. (2000) used hierarchical clustering to characterize gene expression patterns in the three
most prevalent adult lymphoid malignancies: Diffuse large B-cell lymphoma, follicular
lymphoma, and chronic lymphocytic leukemia. Also, using the hierarchical clustering, Ross et
al. (2000) studied gene expression variation in 60 cancer cell lines(tNCI60) and found
association between gene expression patterns as well as other properties such as growth
rates.

While all the above papers are concerned about the classification only, Golub et al (1999)
first studied both the classification and the class prediction. They studied the automatic
procedure of discovering the distinction between two types of leukemia: acute myeloid
leukemia(AML) and acute lymphoblastic leukemia(ALL). In fact, they used the self-organizing
maps for the classification and "weighted gene voting scheme”(a version of the linear
discrimination) for the class prediction. Ben-Dor et al (2000) developed a clustering-based
classification rule and applied it to several cancer data sets. Hastie et al (2001) proposed a
new method, called "tree harvesting” which starts with a hierarchical clustering of genes, and
modelled the response as a sum of the average expression profiles of chosen clusters.
Tibshirani et al. (2002) proposed a new method of class prediction, called "nearest shrunken
centroid”, which has the similar form to the t-statistics of Tusher et al. (2001) and turned out
to be very close to the linear discriminant. They developed a computing package called
PAM (Prediction Analysis of Microarray). By using a compound covariate prediction classifier,
Radmacher et al (2002) argued the use of leave-one-out cross—validation for the computation
of misclassification rate and permutation test for the assessment of the significance of the
prediction result. Olshen and Jain (2002) suggested using the nearest neighbor classifier and
permutation test to derive quantitative conclusions from microarray expression data. On the
other hand, Lee and Lee (2003) extended support vector machines(SVM) to the multicategory
SVM and applied it to the classification of multiple cancer types.

Some authors compared the performance of classifiers. Brown et al (2000) compared
performance of SVM, Parzen windows, linear discriminant, and two decision tree learners, and



70 Choongrak KIM

found that SVM outperform others. Dudoit et al. (2002) compared the performance of linear
discriminant, nearest neighbor, classification trees, and aggregating classifiers using three
well-known gene expression data, and they concluded that linear discrimination or nearest
neighbors performed as well as or better than others. Dudoit and Fridlyand (2003) suggested
a method using bagging to improve the accuracy of clustering, and Dettling and Buhlmann
(2003) discussed a more robust boosting method for tumor classification.

4.6 Analysis of Variance Model

Instead of using the ratio data X, , Kerr et al (2000) suggested an analysis of variance
model based on the raw data when replications are available. In fact, they considered the
following model to account for the multiple sources of variation:

log (Yi) =1+ A;+ Dt Vit G+ (AG) j+ (V) 1t €4
where Y, is the background corrected intensity for the i-th array, the j-th dye, the k-th
sample, and the gth gene, x is the overall mean signal, A; is the effect of the i-th array,
D; is the effect of the j-th dye, V, is the effect of the k-th sample(they used the term
"variety” instead of sample), G, is the effect of the g-th gene, and (AG); and (VG),,

represent interaction terms. Also, they assumed that ¢, is iid random variables with mean 0

and variance o°. The most important term of interest is (VG) x Which captures departures
from the overall averages that are attributable to the specific combination of the k-th sample
and g-th gene. Also, they argue that this model combine the normalization process with the
data analysis because the A,D and V terms effectively normalize the data without
preliminary data manipulation. They advocate the log transformation is natural because the
effects in the data are believed to be multiplicative. Kerr et al. (2000) applied this model to
several designs like the Latin square design.

The ANOVA model approach is possible only when replications are done in either within or
between arrays. In fact, the importance of replications has been noted by Lee et al (2000)
who fit a normal linear mixture model. Recently, Wolfinger et al (2001) suggested two
interconnected ANOVA models, the normalization model and the gene model.

4.7 Singular Values Decomposition

As another method for the analysis of gene expression data, the singular values
decomposition(SVD) has recently been used. The SVD of the px# gene expression matrix X
of rank r gives X = UDV"®, where U is pxp orthogonal matrix, D is px» matrix with all

zeros except the first r diagonal elements D;=d; >0, called singular values, and V is nx#n

orthogonal matrix. As immediate consequences of SVD by assuming d; == d, > 0, we
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have the following: The r nonzero eigenvalues of XX and X'X are the same and they are

squares of singular values d; The column vectors of V are eigenvectors of X'X. Holster et

al. (2000, 2001) defined the vectors a;, ¢=1, -, to be the first r rows of DV"', and call
it characteristic modes associated with the matrix X. Then, it is clear that the i{-th gene

expression can be written as a linear combination of # characteristic modes, ie,

Y r
X ;= lglu,-ja,- . Since ]gl(u,jd,-)2=1,for any i, the contribution of the first k modes to

k —
. . . . K ﬁ
the i-th gene is c{¥= Zl(u,-,-d,-)z. Also, its average over all genes is W= 105”)/ ).
= 1=

By the SVD analysis of real data sets, Holster et al (2000) argued that the actual gene
expressions yield singular values of sufficiently different magnitude so that only the first few
modes are required to capture the essential features of the expression data in most cases. In
most cases, the first two modes captures many of the essential features, and the average
contribution of the first two modes turned out as 62%, 69%, and 72% in the three data sets
considered by Holster et al. (2000). In fact, the measure of the contribution of modes is very
similar to the Shannon entropy. Define the contribution of the i-th singular value as

4 7
e;=d?/ Zldg, then the Shannon entropy is defined as s=1log(1/7) leilog(e,-). Note that
i= i=

s is always between 0 and 1. If s is close to O, then one or two singular values and the
corresponding eigenvectors contain most of the information on the gene expression. On the
other hand, if s is close to 1, the singular values are quite uniform. Holster et al (2001)
applied the SVD analysis to describe the time evolution of gene expression levels by using a
time translational matrix(gene expression matrix with columns representing the time
translation) to predict future expression levels of genes based on their expression levels at
initial times. This analysis corresponds so called to dynamic modelling instead of static
modelling in gene expression data. Also, Alter et al. (2000) used the SVD analysis to the
gene expression data, and represented the first few eigenvectors as sinusoidal functions.

5. REMARKS

During the last 7-8 years a lot of papers about the statistical analyses of gene expression
data have been published since the introduction of the microarray technology. In this paper we
review, summarise, and classify statistical methods used in those papers. Broadly speaking
those papers can be classified into two categories: (1) How to get reliable and accurate gene
expression data? and (2) How to find the significantly expressed genes and how to interpret
the results?. The first category contains issues in image processing and normalization, and the
second one contains many statistical methods or models such as parametric modelling, t-type
statistics, multiple testing problems, cluster analysis, discrimination, analysis of variance model,
singular values decomposition, and etc.
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Even with big recent improvements in this area there are still lots of rooms for further
researches deserving careful consideration. Here we list our personal thoughts on some
possible future research area. (1) In the process of image analysis and normalization a
measurement error model approach could be an alternative method because the observed
intensity entails a lot of variations which can be regarded as measurement errors. (2) Also, a
wide class of transformation should be considered instead of log transformation of the ratio of
the red intensity to the green intensity. (3) Future research must be done in applying the
nonparametric regression to the normalization step since the dispersion varies a lot along with
the amount of intensities. Nonparametric variance function estimation would be worth
consideration. (4) More extensive comparisons between many methods of discrimination are
also worth pursuing. So far, comparisons are done for limited classifiers. (5) “Small n, large
p" problem make it impossible to regard finding the significantly expressed genes as a
variable selection problem in regression, however, the approach could be possible if we can
choose a moderate sized subset of coregulated genes.
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