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Robust Estimator of Location Parameter!)

Dongryeon Park?2)

Abstract

In recent years, the size of data set which we usually handle is enormous, so a lot
of outliers could be included in data set. Therefore the robust procedures that
automatically handle outliers become very importance issue. We consider the robust
estimation problem of location parameter in the univariate case. In this paper, we
propose a new method for defining robustness weights for the weighted mean based
on the median distance of observations and compare its performance with several
existing robust estimators by a simulation study. It turns out that the proposed
method is very competitive.
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1. Introduction

It is often assumed in the social sciences that data conform to a normal distribution. When
estimating the location of a normal distribution, a sample mean is well known to be the best
estimator according to many criteria. However, numerous studies (Hample et al., 1986; Hoaglin
et al., 1976; Rousseeuw and Leroy, 1987) have strongly questioned normal assumption in real
world data sets. In fact, a few large errors might infect the data set so that the tails of the
underlying distribution are heavier than those of the normal distribution. In this situation, the
sample mean is no longer a good estimate for the center of symmetry because all the
observations equally contribute to the value of the sample mean, so the estimators which are
insensitive to extreme values should have better performance.

The estimator is considered robust or resistant if small changes in many of the
observations or large changes in only a few data points have small effect on its value. The
median, the trimmed mean, and M-estimators are considered the examples of the robust
measures of location parameter. These estimators define robustness weights in their own way
to reduce the influence of outliers.

Suppose we have a random sample X ,,--,X,. The sample mean reduces to the
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minimization of
¥ (X,- ) )

Location M-estimators are defined by replacing the quadratic function in (1) with a
objective function p :

mingglp(Xi—a). (2

The median corresponds to p(x) = |x|. Huber estimator and Tukey biweight estimator
are defined by the objective function o y and p g, respectively :

x%/2 for x| < &
o H(x) = 3
Elx| — k2/2 for |x| > k&,

£ [1-(2)°]°) for el <

k?/6 for |x| > k.

o g(x) = (4)

The value k for Huber and Tukey estimator is called a tuning parameter; smaller values of
k produce more resistance to outliers, but at expense of lower efficiency when the errors are
normally distributed. The trimmed mean is the mean of the central n(1— 2a) observations
in order.

In this paper, we propose a new method for defining robustness weights such that the
weighted average using these weights is robust against outliers for estimating location
parameter. In Section 2, the new estimator for the univariate case is defined and efficiency is
compared with several existing methods by a simulation study in Section 3.

2. Defining New Robustness Weight

The idea of defining new robustness weights for location parameter is simple and easy to
implement. Suppose we have a random sample X, ,X, from N (u#, 6%). Then most
observations should lie in a range [x—2 0, #+20]. The distance between observations tends
to be affected by the standard deviation of the population, which means that the distance

between observations would have a certain pattern for given population. If an observation does
not follow the pattern, then this observation is likely to be located outside of the range, so it
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can be considered as an outlier.

To make these idea more precise, we proceed as follow. For each 7, let
dX ;) ={IX;—X], j=1,-,i—1,i+1,,n}. Then d(X,) would have n—1
different values whose distribution primarily depends on the population standard deviation.
Suppose X is the only outlier among the observations, then @(X ;) should be much larger

than the other d(X ;;), i+k However, since d(X ;) consists of #—1 numbers, their
median will be used for determining the weights of X;.

The robustness weights for each observation is defined as follows:

1. For each i=1,-,n, compute d(X ;).
2. Let m; be the median of d(X ;).
3. Define the robustness weights for X; by

m.
where s = median{m , i=1,-,n} and the value k plays same role as the turing

parameter in Huber and Tukey estimator. B is the biweight function,

(1—x2)% if |x|<1
B(x) = (6)

0 otherwise,

Using 7 ;, we can compute the robust weighted average by

Zn:lw,-X,-, where w ;=——"*— . (7
=

We refer to this estimator as the WMMD (Weighted Mean based on Median Distance). In
steps 1 and 2, we compute d(X i,-), the absolute differences from X; to the other
observations and then compute m,;, the median value of these differences. In step 3, we
compare m; with m;, j¥¢ and if m,; is large relatively to others, then X; would have

small weight. We determine the robustness weights using the bisquare function which is
known to have good properties for robust estimation problem (Cleveland, 1979).
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3. Comparison of the Performance

In this section, we provide numerical evidence of the effectiveness of WMMD in reducing
the influence of outliers. We compare the performance of WMMD with the median, the
trimmed mean, Huber estimator, and Tukey biweight estimator.

As a true population, we only considered the population which has a symmetric distribution.
The reason for this is that estimators of location are best understood when a distribution’s
natural candidates for location all nearly coincide (e.g. mean, median, mode). We considered
the following 5 distributions which have heavier tails than normal distribution:

1. t(3)
2. Cauchy distribution with location parameter 0 and scale parameter s with s=1,5

3. Contaminated normal (CN) distribution; F(x) = 0.90(x) + 0.14’(—’;) with ¢ = 10,30

where @(x) is the cumulative distribution function for N0, 1)

We need to choose the turning parameters for Huber estimator, Tukey estimator, and
WMMD. Smaller values of the tunﬁng parameters make these estimators more resistant to
outliers, but less efficient for the normal case. For Huber and Tukey estimator, we used the
default values of S-Plus, which are 1.45 and 5, respectively. For the fair comparison, we need
to choose the turing parameter of WMMD in such a way as WMMD produce almost identical
performance with both Huber and Tukey estimator in the case of MN0,1), and £=5.5
turned out to satisfy such criterion.

We considered 10% trimmed mean and 20% trimmed mean and they are denoted by T(10)
and T(20), respectively.

The sample sizes considered were = = 10,20,--,90,100. The performance of each
estimator was measured by Monte Carlo MSE over 1000 Monte Carlo simulation samples and
the results are reported in Table 1 to Table 5. Each table shows the relative efficiency of
WMMD to the other estimators, which is defined by the ratio of Monte Carlo MSE of the
other estimator to that of WMMD. The larger number indicates the better performance of
WMMD.
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Table 1 : The relative efficiency of WMMD for Cauchy
distribution with location parameter 0 and scale parameter 1.

n Tukey Huber T(10) T(20) Median
10 1.0663 1.3010 3.7453 1.3570 0.8012
20 1.0443 1.2764 2.3764 1.1194 0.8883
30 1.0603 1.2168 1.9779 1.0330 0.8895

40 1.0524 1.3714 1.9724 1.1616 0.9031
50 1.0724 1.3955 2.0377 1.1338 0.9085
60 1.0754 1.3592 1.9371 1.1284 0.9427

70 1.0872 1.3768 1.9304 1.0936 0.8971
80 1.0853 14115 1.9956 1.1316 0.9762
90 1.0803 14372 2.0113 1.1413 0.8981
100 1.0879 1.4418 1.9929 1.1401 0.9697

Table 2 : The relative efficiency of WMMD for t(3)

n Tukey Huber T(10) T(20) Median
10 1.0285 1.0007 1.0490 09715 1.0241
20 1.0116 1.0139 1.0456 0.9770 1.1447
30 1.0184 0.9978 1.0087 0.9545 1.1452

40 1.0124 1.0169 1.0373 0.9646 1.2002
50 1.0456 1.0596 1.0655 1.0133 1.1485
60 1.0278 1.0472 1.0595 0.9768 115156
70 1.0293 1.0665 1.0793 1.0065 1.1502
80 1.0223 1.0522 1.0535 1.0131 1.1969
90 1.0307 1.0355 1.0376 0.9807 1.1692

100 1.0126 1.0301 1.0364 0.9935 1.2512
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Table 3 : The relative efficiency of WMMD for Cauchy

distribution with location parameter 0 and scale parameter 5.

n Tukey Huber T(10) T(20) Median
10 0.9805 1.2873 5.1422 1.4310 0.8092
20 | 10351 1.3542 2.5805 1.1813 0.8580
30 1.0208 1.3300 2.0916 1.1255 0.8847
40 1.0533 1.3710 2.0492 1.1377 0.8903
50 1.0672 1.3689 1.9666 1.1126 0.8870
60 1.0701 1.3734 2.0111 1.1178 0.9062
70 1.0747 1.3029 1.8574 1.0588 0.9142
80 1.0711 1.3252 1.7756 1.0691 0.8768
90 1.0735 1.3784 1.9449 1.1080 0.9595
100 1.0892 1.3032 1.7732 1.0493 0.8456
Table 4 : The relative efficiency of WMMD for CN distribution
with ¢=230
n Tukey Huber T(10) T(20) - Median
10 1.0501 1.2441 1.2157 1.2081 1.4027
20 0.9940 1.1929 1.1941 1.1803 1.4949
30 0.9998 1.3625 1.3553 1.2793 1.6027
40 0.9898 1.2581 1.2530 1.2050 1.4581
50 0.9853 1.3301 1.3328 1.2835 1.5966
60 0.9868 1.289% 1.2914 1.2478 1.6081
70 0.9767 1.2155 12105 1.2030 1.5292
80 0.9823 1.3263 1.3201 1.2783 1.6206
90 0.9770 1.2136 1.2119 1.2133 1.6098
100 0.9829 1.2981 1.2880 1.2594 1.7215
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Table 5 : The relative efficiency of WMMD for CN distribution
with =10

n Tukey Huber T(10) T(20) Median
10 1.0382 1.1417 1.1133 1.1083 1.3246
20 0.9960 1.1333 1.1175 1.1228 1.4430

30 0.9952 1.1694 1.1452 1.1391 1.3830
40 0.9833 1.1533 1.1439 1.1588 1.5269
50 0.9808 1.1746 1.1750 1.1890 15125
60 0.9761 1.1379 1.1412 1.1435 1.5349
70 1.0030 1.1726 1.1586 11174 1.3543

80 0.9800 1.1858 1.1766 1.1830 1.4547
90 0.9746 1.1855 1.1824 1.1775 1.5009
100 0.9838 1.1542 1.1470 1.1576 1.4471

The performance of the median heavily depends on the type of the underlying distribution.
There is no doubt that the median is the best location estimator for Cauchy distribution, but
shows very poor performance at t(3) and CN distributions. Since we hardly know the exact
form of the undelying distribution in practice, the median is not a good choice in a practical
point of view. The performance of the trimmed means also depends on the type of the
underlying distribution. Besides, they show very poor results at Cauchy and CN distributions.
It is very clear that WMMD is better than Huber for all distributions here. It is also clear
that WMMD is better than Tukey for Cauchy distribution, but Tukey and WMMD vyield very
comparable results for t(3) and CN distributions.

Simulation results indicate that WMMD is a competitive method. Moreover, WMMD does
not require iteration and generalizes easily to higher dimensions, and these are another
attractive points of WMMD over other estimators.

4. Conclusion

In recent years, the size of data set which we usually handle is enormous, so a lot of
outliers could be included in data set. Therefore the robust procedures that automatically
handle outliers becomes very importance issue.

For local regression problem, Park (2003) proposes the idea of determining robustness
weights using weighted median distance between observations and compares the performance
with lowess (Cleveland, 1979). It turns out that his proposed method is more appropriate for
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heavy contamination. In this paper, we expanded the idea of Park (2003) to the univariate
location parameter estimation problem. we proposed the robustness weights for the weighted
mean in the univariate case and compared its finite sample properties with several existing
methods. The asymptotic behavior of the proposed method is not derived in this paper, and is
left as a further research topic.
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