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Comparison Of Interval Estimation For Relative Risk Ratio
With Rare Eventsl)
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Abstract

One of objectives in epidemiologic studies is to detect the amount of change
caused by a specific risk factor. Risk ratio is one of the most useful measurements in
epidemiology. When we perform the inference for this measurement with rare events,
the standard approach based on the normal approximation may fail, in particular when
there are no disease cases observed. In this paper, we discuss and evaluate several
existing methods for constructing a confidence interval of risk ratio through
simulation when the disease of interest is a rare event. The results in this paper
provide guidance with how to construct interval estimates for risk difference and risk
ratio when there are no disease cases observed.3
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1. Introduction

In epidemiologic research the calculation of appropriate measures of disease frequency is the
basis for the comparison of populations and, therefore, the identification of disease
determinants. To do this most efficiently and informatively, the two frequencies being
compared can be combined into a single summary parameter that estimates the association
between the exposure and the risk of developing a disease. This can be accomplished by
calculating risk ratio as well as risk difference. This measure is a useful measurement to
detect the amount of change caused by a specific risk factor. Risk ratio or relative risk is the
ratio of the incidence of disease in the exposed group divided by the corresponding incidence
of disease in the nonexposed group. Risk ratio is the measure used most commonly by those
evaluating possible determinant of disease because it represents the magnitude of the
association and provides information that can be used in making a judgement of casuality.
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Thus, the risk ratio is valuable in etiologic studies of diseases.
Suppose x; and x, are disease frequencies of two independent populations with sizes
n, and #, respectively. The risk ratio is defined by p,/ p, where p, and p, are

the probabilities of disease in the two populations. The standard method of constructing
confidence interval of the risk ratio is based on the normal approximation, which provides the
interval estimate:
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(1.1

where ﬁ=x1,nl and P, =x,/ n,. This interval estimate is a standard one in most statistical

software packages so they are used by non-statisticians widely. Along with the computational
simplicity, this estimate has the apparent advantage of producing intercal centered on the point
estimate, thus resembling those for the mean of a continuous Normal variate.

However, when x; = x, = 0, we have a problem with using the interval estimate (1.1).
The confidence interval (1.1) is not defined. The situation in which no cases occur in a
binomial experiment arises quite frequently when p, and p, are small. Examples are an
epidemiologic study where disease of interest is a rare event and a diagnostic test in which it
is common to deal with a small false negative rate ( the probability of a disease individual
testing negative).

This paper is concerned with the interval estimates of the risk ratio when the probabilities
of cases are small. We consider four interval estimates including (1.1) and compare their
performances such as coverage probabilities and interval lengths by simulation. The results in
this paper provide guidance with how to construct interval estimates for risk ratio, in
particular when there are no disease cases observed.

Various interval estimates of risk ratio have been proposed by Neother(1957), Walter(1975),
Katz et al.(1978), Aitchison and Bacon-Shone(1981), Koopman(1984), Mee(1984), Miettinen and
Nurminm(1985), Gart and Nam(1998) and Ewell(1996). All of these studies, however, have
focused on improving the small and moderate sample performace of the interval estimates. To
our knowledge, our simulation experiment is the first comparative studies for interval
estimates of the risk ratio with small probabilities of cases.

This paper is organized as follows. In section 2, we describe several interval estimates for
the risk ratio. In section 3, simulation results are provided and discussions follow in section 4.

2. Various interval estimates of Risk Ratio

Gart and Nam(1988) grouped several interval estimates inte three subsets based on their
mode of derivation. The interval estimate (1.1) is the one and the other two are the
Fieller-like method and likelihood method. In this subsection, we describe briefly these two
methods as well as the Baysian method.
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1.Fieller-like method(BF)
Let ¢=p,/p,. The Fieller-like interval uses the statistic T=¢—¢ where ¢=2;/p, It can

be shown that 7 is asymptotically normal with variance

e, | P
—r42 , ¥4
var(T) 1ob + b,

p; in this variance formula is substituted by @p, and p, is estimated by ,. Finally, the

100(1- @)% confidence interval using this estimated variance V( 7) is given as the solution of
following quardratic equation.

_ (3—gF=ZWUD 2.1)
The above Fieller-like interval estimate is proposed by Neother (1975). Different Fieller-like

interval estimates for risk ratio based on the statistics T =2;— ¢f have been proposed by
Katz et al. (1978) and Bailey (1987).

2. Methods Based on Likelihood Methods(BL)
Miettinen and Nurminen(1985) have proposed a method that use a maximum likelihood

estimator(MLE) of the nuisance parameter, p,, for given values of ¢=p,p,. Let P, be the
MLE of p, given ¢ and let p;=¢p,. They started with the statistic 7=p,— dpand
estimated its variance by ,¢;/n, + ¢ Pyqy/n,. Then, they obtained the limits of 100(1- )%
confidence interval as the roots to the equation

(3, — ¢b,)*
(=== e = 2%, (2.2)
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Koopman(1984) derived the same confidence limits with different derivations.

3. Bayesian Method with Binomial likelihood (BB)
The Bayesian probability interval of the risk ratio is constructed as follows. Let a( 29 $3)
be the prior distribution of (p_1, p_2 ). Then the posterior distribution is given by

m(py. 2 | %y, %9) o p1(1—p1) ™ 03 (1—py) ™ n(py b5)

Let 6=p,/p, and ¢=p, and let (0, ¢|x,,x,) be the corresponding posterior distribution
of 8 and ¢, which can be obtained by use of the variable transfomation technique. Now, the
equal tail 100(1- @)% probability interval has the form of (L,U) which satisfies

[ (6,01 X, X)dpdo=af2

and

[ (6,61 X, X)dodo=of2
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See Gelman et al(1995). In practice, we can obtain L and U by using a simple Monte-Carlo
method as follows. First, we calculate the posterior distribution of (p;, ;) and obtain the

posterior distribution of p;/p, by use of the variable transformation technique. Finally, we get

the limits of the equal tail 100(1- @)% probability interval as the upper and low 100( @/2)
percentiles of the posterior distribution of p,/p,. These percentiles can be easily calculated
using the simple Monte-Carlo method

3. Simulations

In this section, we present the simulation results for comparing the performance of the
aforementioned interval estimates for the risk ratio when the probabilities of the disease case
are small. In the Bayesian methods, independent uniform distributions are used as prior

distributions for p; and p, to represent prior ignorance. Then, a posterior p; and p, are
independent beta distributions with parameters (x,+1,7,—x+1 and (x+1, 7—x+1)
respectively.

We assume that the sample sizes of the two populations are the same (ie. 7 =mn,). We set
the true risk difference p;/p, at 05 and 1.0, and investigate the coverage probabilities and
interval lengths as we change the value of p, from 0.001 to 0.1. We add 05 when a

generated datum shows zero.

Figure 3.1 draws that coverage probabilities of the four 95% interval estimates - the
interval estimate based on the normal approximation (BZ), Fieller-like method (BF), likelihood
method (BL) and Bayesian method (BB) when the sample sizes are 50 and 200.

Apparently, the all four methods perform competitively well. The interval estimate based in
the normal approximation performs reasonably well. This is partly because we add 0.5 when a
generated datum shows zero. Table I and Table II present the values of the coverage
probabilities and interval lengths. The Fieller-like method gives the shortest interval lengths
with proper coverage probabilities. Thus, we recommend using the Fieller-like method when
the probability of the disease case is expected to be small.

4. Discussion

We performed simulation for evaluating various interval estimates for risk ratio when the
probabilities of the disease case is small. Our simulation results showed that all four methods
method performs competitively well. In particular, the performance of the Fieller-like interval
estimates is superior comapred to the other three interval estimates. From the computational
point of view, the Bayesian method is most appealing since calculation of the Bayesian
probability intervals only requires random number generation which can be done easily by use
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of standard softwares such as SAS or Splus and the interval estimates of the risk ratio can
be constructed simultaneously using the same generated random numbers.
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3.1: Results of risk ratio
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Comparison of two proportions

Table I. Coverage Probabilities of Risk Ratio Interval Estimates

n Pl/P2 =0.5 p1/p2 =0.5
(n1 = "7'2) D2 BZ BB BF BL BZ BB BF BL

20 0.001 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.010 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.020 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.040 1.000 0998 1.000 0.998 1.000 0999 0994 0.999
0.060 1.000 0991 1.000 0991 1.000  0.998 098  0.998
0.080 0999 0990 1.000 0.990 1.000  0.993 0.969  0.993
0.100 0996 0988 0.997 0.987 0999 0984 0967 0.984

50 0.001 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.010 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.020 0999 0990 0998 0.990 1.000 1.000 1.000  0.999
0.040 0.998 0.985 0.997 0.984 1.000 0.994 0.983 0.983
0.060 0992 0981 0992 0.980 0.993 0984 0970 0.975
0.080 0982 0972 0977 0.971 0.991 0.969 0954  0.956
0.100 0982 0973 0961 0.969 0.980  0.963 0940  0.952

Table II. Average Lengths of Risk Ratio Interval Estimates

n Pl/Pz =0.5 pl/pZ =05
(n,=ny) p BZ BB BF BL BZ BB BF BL
20  0.001 47.595 14.424 3973 16.820 47.682 14432 3973 16910
0.010 42247 13358 3.855 15.729 43280 13.866 3.993 16.734
0.020 38.609 12.678 3.652 15.045 40.791 13.679 3.852 17.031
0.040 29.578 10.718 3.653 12.750 33.072 12293  4.047 15721
0.060 22394 9.031 3.428 10.691 26.867 11.165 4.007 14.516
0.080 17433 7.499 2973 8935 22,008 9.717  3.602 12.787
0.100 13.468 6390 2.849 7.377 17.381 8505  3.552 10.794
50  0.001 47.981 14.763 4473 16.826 48236 14903 4.493 17.070
0.010 36.639 12.466 4.135 14.508 39.358 13.685 4.418 16.825
0.020 28277 10.672 3.898 12.497 32592 12,616 4.453  16.068
0.040 15624 7223 3251 829 20340 9.604  4.092 12219
0.060 8.570 4926 2.651 5.467 12.512 7237 3565  8.783
0.080 5.014 3412 2105 3.606 7283 5116 2922  5.746

0.100 3.759 2.691 1.699 2.833 5719 4132 2369  4.624




