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Outliers in Multivariate Box—-Cox Transformed Data
Myung Geun Kim?l

Abstract

The sensitivity of the multivariate Box-Cox transformation model to simultaneous
perturbations of all the data based on the likelihood displacement is studied in order
to detect outliers. An example is given for illustration.

Keywords : Box-Cox transformation, likelihood displacement, outliers.
1. Introduction

Box and Cox (1964) discussed the family of transformations for improving the normality in
linear model. Andrews et al. (1971) extended the Box-Cox transformations to multivariate
data. It is well recognized that the maximum likelihood estimate of the transformation
parameter is very sensitive to outliers. However, few diagnostic methods for multivariate
transformations have been developed. Velilla (1995) developed deletion diagnostics and
presented a robust estimator of transformation parameter. Riani and Atkinson (2000) suggested
a forward searching method which starts with an initial subset of the data containing no
masked outliers and monitors the effect of adding observations to the subset, but they did
not clearly show that focusing on a few plausible combination of the transformation
parameters with one-at-a-time searches will be sufficient generally, as indicated by the
discussant.

The local influence method introduced by Cook (1986) is a general method of assessing the
influence of minor perturbations of a model and it is used for identifying observations that
influence the assumptions underlying the model. It enables us to handle all the data by
allowing assessment of simultaneous perturbations affecting all the data, unlike
case—-deletions. The local influence method relies on the surface of the likelihood displacement
for investigating the influence of observations. It is based on the maximum curvature and its
corresponding  direction vector of a certain curve on the surface formed by the perturbation
vector and the likelihood displacement.

In this work we will study the sensitivity of the multivariate Box-Cox transformation model
to simultaneous perturbations of all the data based on the likelihood displacement in order to
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identify outliers. An illustrative example is given.
2. Box-Cox Transformation

The Box-Cox transformation of a p-variate random vector x ,= (x,,...,%,) is
defined by

(A= D/a,; i A %0
% n(23) = [1og(x,,~) i A;=0

for all r = 1,..,n and i = 1..p. It is assumed that all of p components in each 4 , take
positive values. The Box—Cox family of transformations is indexed by the vector of
transformation parameters, A= (A,,...,4,) T We assume that the transformed random
vectors x (A)=(x,(A),...,x,(4,) T are independent and identically distributed as
a p-variate normal distribution Ay, )  with mean vector , and covariance matrix
In what follows, for an m x n matrix 4, o( A) indicates the mn x 1 vector formed by
stacking the columns of 4 from the first column to the last one. For a symmetric n x n
matrix 4, op( A) implies the n(n+1)/2 x 1 vector obtained from ,( 4) by deleting all of
the elements that are above the diagonal of 4. We denote by g the column vector of
parameters formed by stacking the elements of ron and yp( ¥y 1) in this order. More

details about matrix calculus can be found in Magnus and Neudecker (1988) and Schott
(1997).

3. Local Influence Based On Likelihood Displacement

Le¢ w=(w,,..., w,) 7 be an n x 1 vector of perturbations. We denote the

log-likelihoods for the unperturbed and perturbed models by L( O and L( 8] w)
respectively. The likelihood displacement LI w) is defined by 2[ L(Ao) — L(’B W1 where
“p and "9 , are the maximum likelihood estimators of g under the unperturbed and

perturbed models, respectively. The surface of interest is formed by the n+l x 1 vector of the
values gy and [ 4) @S 4 Varies over a certain space.

We consider case-weight perturbations for which the transformed random vectors x ( Q)
(r = 1,...,n) are independent and distributed as a p-variate normal distribution N g, 3/w )

We write as ], the m x 1 vector with all elements equal to 1. When ¢= 1 , the



Outliers in Multivariate Box-Cox Transformed Data 191

perturbed model reduces to the unperturbed model so that L( ) = L( 4] 1 ,)-

Define the p(p+5)/2 X n matrix

_ 9L 6l w)
300w’

evaluated at g_ “pand g= 1 , and the p(p+5)/2 x p(p+5)/2 matrix
1= 3L 0
360 07
evaluated at 9= "0 Let

F=4TL1'a

let ¢ be the eigenvector corresponding to the largest absolute eigenvalue of —9°F

max

and let 1 o be the { x 1 vector with its i-th element equal to 1 and the others being zero.

Then the largest absolute eigenvalue is the maximum curvature of the curve which is the

portion of the surface cut out by the plane spanned by the vectors and

1 (n+1)
( 17,;,3,( ,0) T (Cook, 1986, pp.138-9). Observations that correspond to large elements of the

first direction vector [ max 2r€ locally influential and potential outliers.

In the following subsections we will derive 7 and g4in order to get &

3.1 Derivation of ‘L. The log-likelihood function, ignoring unimportant constants, becomes
L( )= ﬁ‘(ﬂ i—1) 2 log(x n-)+'—§’—logl z 'll—é—tr E(A, ) TE(A, p) 37!
= r= ’

where  E(A, p)=X(A)—1,p¢7 and X(A)T=(x,(A),...,x,4) We have
alternative expressions for the last term of f( g) as follows
t ECA, ) TE(A, @271} =0T E(A, W Z7'® 1 )i E(A, )
=oT{ E(A, ) TECA, )} D ,oh(Z7Y) @
where p , is the 2 x p(p+1)/2 duplication matrix such that (¥ = D Sk > 1) and
the notation () denotes the Kronecker product.
Let

de {(A) { — 272 =D+ A7 % 0g (x ;) if A #0

FAAD =T T /)xt i tog (x,) ? if 4,=0
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Cd% Q) [ 227N LA ) +HAT R log (2 )} P if A 0

* 4D A’ —{(I/B)x‘,;i{ log (x )} * if4,=0

and
R(H=[d,® x WA, .., d, x (4 )
where g, is the i-th column of the identity matrix [ , of order p and
% 5(A)=C% 1{A),..., x 5(1 ) Using the first equality of (1), differentiation of ( g)
with respect to J yields

a—g&ﬂ —— R(A(Z'QT ) E(4, ) @

and then the second order differentiation is given by

LLO) - — gl { a0 % AN ECA, 0 Z M- ROAZRIIRADT (3

where the first term in the right-hand side of (3) is the p x p diagonal matrix whose i-th
diagonal element is given by that surrounded by brackets and

X (A)=Cx A, ..., % (4). Since N1 ,uN/dpT=1,Q1, we get
2
%%(;0)7 = RA(Z"'®I,) 4

Since the right-hand side of (2) can be written as — R( A){ I R E( A4, w} D SR Z b,

we have

2
-~ 59th§(0)2_1) =— RO IRE(A w)}D, ®)

Since dL( 8)/3 p=( 2 ~'® 1 Df E( A, m)}, we easily obtain

9L _
a_ﬂ—é‘f%=—n2 " ©®

Since we have an alternative expression JdL( @)/d p=[ 1 p®{ 1TECA, 1D SUR( 1,

it is easily shown that

2
F 3#{’2 -1y =[I1,(1,7E(A, »)}1D, -

Using Theorem 8.4 of Schott (1997, p.336) and the second equality of (1) provides
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92L(8) —__B p1
avh( Z—l) avh T( 2—1) - 2 Dﬂ(z®z')DD (8)

Replacing the unknown parameters in (3) to (8) by their maximum likelihood estimates, we
obtain "] and in this case the derivative in (7) vanishes. Using the formula for finding the

inverse of a partitioned matrix, a little computation yields

?

1 @i'[I, @, @ +diag(0,-L 5-2(DYIHD,]Y
T
3

L=

I
Q
Q

evaluated at o _ “p Where

Q= - X '®I,+E(2'®1,)% 27917
2{1,,®E( Aw}D[DY22)D,] 'DH1,RE(A p)T}

+_
n
Q.= —diagl{ dT® % (AN E(A, ) Z "+ R(DQ,R(AT

Q.- L R(N(:®1,)%

Qs=—% R(N{I,®E(A p)}D,[DNERE D,

32 Derivation of 4 The perturbed log-likelihood, ignoring unimportant terms for computing
4 is given by

L6l W= —+t{ E(A, ) TWE(A, » 5
= 2o WU E(A, W E(A, 1)} D wh(E ")
= Lo EA, w) (270 W B4, w) ©)
where g is the n x n diagonal matrix whose r-th diagonal element is w, Let
e (A, u) T be the r-th row of E( A, p)- Similarly to the derivation of (2), from the third

equality of (9) we can derive

Mﬂ_wl =— RCD{ 21 E(A, ) TIQ I, Ju( W

and then a little algebra shows that

QLB w) __ oz E(A o) T®IU

2iowT (10)
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where U=[{d, ®d, ....d,,0d,.,]}

Since we have L( @| w)/d p=[{ Z 1 E(A, ) }® 1 71 W) from the third equality of
(9), it is easily shown that

2
3 L( 0‘ w) = E—IE(A, I‘)T

We get JL(0| wavh( X H==1/ DN E(A, u) T@ E(A, 1) TJo( W), from the
second equality of (9) and therefore we have

_L(Ol wy  _

vh(Z HowT (12)

where (3, ®) is the p2 x n matrix whose r-th column is e (A, p®e (A, -

Evaluating the derivatives in (10) to (12) at 9= "pad w=1, yields 4

4. A Numerical Example

For illustration we consider bivariate radiation measurements recorded through closed (x ;)

and open (x ,) doors of 42 microwave ovens (Johnson & Wichern, 1998, p.192 and p.212). The

maximum likelihood estimates of the transformation parameters are A ; = 0.161 and A , =
0.151.
Figure 1 shows the index plot of the elements of max described in Section 3 for the

multivariate Box-Cox transformation model. It indicates that observations 13, 14, 19 and 35
are outliers for this model.
The likelihood ratio statistic for the hypothesis = ( has a value 2.34 and the associated

p-value is 0.311. Thus it is reasonable to take log-transformation of both variables. Figure 2
shows the scatterplot for log-transformed data. We can see that observations 13, 14, 19 and
35 identified by the local influence method are located at the outer side of the data cloud.
Observations 13 and 19 can influence the variances of both log-transformed variables.
Observations 14 and 35 can influence the probabilistic relation between both log-transformed
variables.
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Figure 1. Index plot of the elements of 7  for the Box-Cox transformation model
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Figure 2. Scatter plot for log-transformed data
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