Waveguide Spatial Interference Filtering in Adaptive Matched Field Processing

적응 정합장처리에서 도파관 공간간섭 필터링

  • Published : 2004.05.01

Abstract

Detection and localization of a slow and quiet target in shallow water environments is a challenging problem for which it is well known that snapshot is deficient because of a fast and strong interferer. This paper presents waveguide interference filtering technique that mitigate strong interferer problems in adaptive matched field processing. MCM (multiple constraint method) based on NDC (null direction constraint) has been proposed for new spatial interferer filter. MCM-NDC using replica force a interferer component to be filtered through CSDM (cross-spectral density matrix). This filtering have an effect on sidelobe reduction and restoring of signal gain of a quiet target. This technique was applied to a simulation on Pekeris waveguide and vertical array data from MAPLE03 (matched acoustic properties and localization experiment) in the East Sea and was shown to improve SBNR (signal-to-background-and-noise ratio) over the standard MVDR (minimum-variance distortionless response) and NSP (null space projection) technique.

천해는 속도가 빠르고 강한 간섭표적으로 인하여 신호단편 (snapshot) 수가 제한되어 인접한 느리고 약한 표적을 탐지하기 어려운 환경이다. 천해환경에서 적응정합장처리에 적용하여 고소음의 간섭표적의 효과를 줄일 수 있는 도파관 공간의 간섭표적 필터링 기법을 제안하였다. 이를 위하여 NDC (null direction constraint)를 적용한 MCM (multiple constraint method) 기법을 새로운 공간간섭 필터로 제안하였다. NDC는 복제음장을 이용하여 CSDM (cross-spectral density matrix)에 포함되어있는 강한 소음원 성분을 강제적으로 걸러줌으로서, 부엽 준위가 낮아지고 저소음표적 신호의 이득을 복원시킨다. 이 기법을 Pekeris 도파관에서의 시뮬레이션 및 동해에서 수행한 정합장처리 실험인 HAPLE03 (matched acoustic properties and localization experiment)의 수직선배열 자료에 적용하였으며, 그 결과 인접한 저소음 표적의 SBNR (signal-to-background-and-noise ratio)이 MVDR (minimum variance distortionless response)과 NSP (null space projection) 보다 향상되었다.

Keywords

References

  1. IEEE Trams, Aerosp. Electron. Syst. v.10 Rapid convergence rate of adaptive array I.Reec;J.Mallett;L.Brennan https://doi.org/10.1109/TAES.1974.307893
  2. Electron. Lett. v.31 no.10 Covariance matrix augumentation to produce adaptive array pattern troughs R.J.Mailloux https://doi.org/10.1049/el:19950537
  3. Electron. Lett. v.31 no.25 Production of adaptive array troughs by dispersion synthesis M.Zatman https://doi.org/10.1049/el:19951486
  4. IEEE Trans. Signal Processing v.47 no.4 Theory and applcation of covariance matri tapers for robust adaptive beamforming J.R.Guerci https://doi.org/10.1109/78.752596
  5. IEEE Trans. Signal Processing v.48 no.6 Comments on Theory and applcation of covariance matrix tapers for robust adaptive beamforming M.Zatman
  6. Proc. 31st Asilomar Conference on Signals, Systems and Computers, IEEE Computer Society 1997 Robust DMR and multi-rate adaptive beamforming H.Cox;R.Pitre
  7. J. Acoust. Soc. Am. v.88 no.4 Null-broadening in a waveguide J.S.Kim;W.S.Hodgkiss;W.A.Kuperman;H.C.Song https://doi.org/10.1121/1.400208
  8. IEEE J. Oceanic Eng. v.28 no.2 Null broadening with snapshot-deficient covariane matrices in passive sonar H.C.Song;W.A.Kuperman;W.S.Hodgkiss;P.Gerstoft;J.S.Kim https://doi.org/10.1109/JOE.2003.814055
  9. Optimum Array Processing Detection, Estimation and Modulation Theory, Part VII H.L.Van Trees
  10. J. Acoust. Soc. Am. v.113 no.5 Source motion mitigation for adaptive matched field processing Lisa M. Zurk;Nigel Lee;James Ward https://doi.org/10.1121/1.1561817
  11. Proceeding of the IEEE v.58 Probability distributions for estimations of frequency wavenumber spectra J.Capon;N.Goodman https://doi.org/10.1109/PROC.1970.8014
  12. J. Acoust. Soc. Am. v.88 no.4 Environmentally tolerant beamforming for high-resolution matched field processing: Deterministic mismatch H.Schmidt;A.B.Baggeroer;W.A.Kuperman;E.K.Scheer https://doi.org/10.1121/1.400208
  13. J. Acoust. Soc. Am. v.113 no.3 Improvement in matched field processing using the CLEAN algorithm H.C.Song;J. de Rosny;W.A.Kuperman https://doi.org/10.1121/1.1531510
  14. IEEE Trans. on Aerospace and Electronic System v.AES16 Sample size considerations for adaptive arrays D.M.Boroson
  15. J. Acoust. Soc. Am. v.98 no.1 Cross-spectral matrix estimation effects on adaptive beamforming D.E.Grant;J.H.Gross;M.Z.Lawrence https://doi.org/10.1121/1.413642