Synthesis of Methoxy Poly(ethylene glycol)-b-poly($\varepsilon$-caprolactone) Diblock Copolymers and Release Behavior of Albumin for Implantable Protein Carriers

이식형 단백질 전달체로서 메톡시 폴리(에틸렌 글리콜)/폴리카프로락톤 블록 공중합체의 합성 및 알부민의 방출 거동

  • 서광수 (전북대학교 고분자ㆍ나노공학과) ;
  • 전세강 (전북대학교 유기신물질공학) ;
  • 김문석 (한국화학연구원 나노생체재료연구) ;
  • 조선행 (한국화학연구원 나노생체재료연구) ;
  • 이해방 (한국화학연구원 나노생체재료연구) ;
  • 강길선 (전북대학교 고분자ㆍ나노공학과)
  • Published : 2004.05.01

Abstract

MPEG-PCL diblock copolymers consisting of methoxy poly(ethylene glycol) (MPEG) and $\varepsilon$-caprolactone (CL) as drug carriers were synthesized by ring-opening polymerization MPEG-PCL diblock copolymers were characterized by X-ray diffraction and differential scanning calorimetry. After freeze milling of block copolymers and albumin bovine-fluorescein isothiocyanate (FITC-BSA) as model protein, the wafers loaded FITC-BSA were fabricated by direct compression method. The release profiles of FITC-BSA were examined using pH 7.4 PBS for 14 days at 37$^{\circ}C$. The release amount was determined by fluorescence intensity by using the fluorescence spectrophotometer. The morphological change of wafers was observed by digital camera and scanning electron microscope. The release rate and initial burst of BSA increased with increasing PEG molecular weights and decreasing PCL molecular weights in the segments of MPEG -PCL diblock copolymers.

약물 전달체로서 메톡시 폴리(에틸렌 글리콜) (MPEG, methoxypolyethylene glycol)과 생분해성 폴리에스테르 계열의 카프로탁톤 ($\varepsilon$-CL, $\varepsilon$-caprolactone)으로 구성된 MPEG-PCL 블록 공중합체를 개환중합을 통해 합성하였다. MPEG-PCL의 결정성과 열적특성은 X선 굴절계와 시사주차열량계를 통하여 분석하였다 모델 단백질로서 알부민 (FITC-BSA, albumin bovine-fluorescein isothiocyanate)과 블록 공중합체를 동결 제분 후, 직접압축 성형방법에 의해 웨이퍼를 제조하였다. 알부민의 방출은 pH 7.4 인산염완충액을 사용하여 37$^{\circ}C$에서 14일 동안 관찰하였다. 알부민의 방출양은 형광분광기를 통하여 FITC의 강도에 의해 결정되었다. 웨이퍼의 형태학적 관찰은 디지털 카메라와 전자주사현미경을 통하여 관찰하였다. 알부민의 방출 속도와 초기 burst는 MPEG-PCL 블록 공중합체의 분절 내에서 폴리(에틸렌 글리롤)의 분자량이 증가할수록 또한 폴리카프로락톤의 분자량이 감소할수록 많은 초기방출과 단축된 방출기간을 보였다.

Keywords

References

  1. Adv. Drug. Deliv. Rev. v.55 J.Panyam;V.Lavhasetwar
  2. FASEB J. v.16 J.Panyam;W.Z.Zhou;S.Prabha;S.K.Sahoo;V.Labhasetwar https://doi.org/10.1096/fj.02-0088com
  3. J. Microencapsul. v.14 M.Igartua;R.M.Hernandez;A.Esquisabel;A.R.Gascon;M.B.Calvo;J.L.Pedraz https://doi.org/10.3109/02652049709051138
  4. J. Control. Rel. v.52 A.G.Coombes;M.K.Yeh;E.C.Lavelle;S.S.Davis https://doi.org/10.1016/S0168-3659(98)00006-6
  5. Korea Polymer J. v.7 J.C.Cho;G.Khang;J.M.Rhee;Y.S.Kim;J.S.Lee;H.B.Lee
  6. Bio-Med. Mater. Eng. v.9 G.Khang;J.C.Cho;J.W.Lee;J.M.Rhee;H.B.Lee
  7. Polymer Preprints v.40 H.B.Lee;G.Khang;J.C.Cho;J.M.Rhee;J.S.Lee
  8. Korea Polymer J. v.8 G.Khang;J.H.Lee;J.W.Lee;J.C.Cho;H.B.Lee
  9. Polymer v.24 J.C.Cho;G.Khang;H.S.Choi;J.M.Rhee;H.B.Lee
  10. Korea Poymer J. v.8 G.Khang;H.S.Choi;J.M.Rhee;S.C.Yoon;J.C.Cho;H.B.Lee
  11. Biomater. Res. v.4 W.I.Son;D.I.Yun;G.Khang;B.S.Kim;H.B.Lee
  12. Polymer v.25 H.S.Choi;S.W.Kim;D.I.Yun;G.Khang;J.M.Rhee;Y.S.Kim;H.B.Lee
  13. Macromol. Chen. Symp. v.4 H.S.Seong;D.S.Moon;G.Khang;H.B.Lee
  14. Polymer v.25 S.A.Seo;H.S.Choi;D.H.Lee;G.Khang;J.M.Rhee;H.B.Lee
  15. Int. J. Pharm. v.234 H.S.Choi;G.Khang;H.Shin;J.M.Rhee;H.B.Lee https://doi.org/10.1016/S0378-5173(01)00968-1
  16. Polymer v.26 H.S.Seong;D.S.Moon;G.Khang;J.S.Lee;H.B.Lee
  17. Int. J. Pharm. v.239 S.A.Seo;H.S.Choi;G.Khang;J.M.Rhee;H.B.Lee https://doi.org/10.1016/S0378-5173(02)00074-1
  18. Polymer v.26 T.K.An;H.J.Kang;D.S.Moon;J.S.Lee;H.S.Seong;J.K.Jeong;G.Khang;H.B.Lee
  19. Polymer v.26 J.Y.Yoo;S.W.Kim;G.Khang;H.S.Seong;J.K.Jeong;H.J.Kim;J.S.Lee;H.B.Lee
  20. Methods of Tissue Engineering Cell-synthetic surface interaction : Physicochemical surface modification, Section II. Methods for Cell Delivery Vehicles G.Khang;H.B.Lee;A.Atala(Ed.);R.Lanza(Ed.)
  21. J. Biomater. Sci., Polym. Ed. v.13 S.J.Lee;G.Khang;Y.M.Lee;H.B.Lee https://doi.org/10.1163/156856202317414375
  22. Korea Polymer J. v.9 G.Khang;C.S.Park;J.M.Rhee;S.J.Lee;Y.M.Lee;I.Lee;M.K.Choi;H.B.Lee
  23. J. Polym. Environ v.8 J.Mergaert;K.Ruffieux;C.Bourban;V.Storms;W.Wagemans;E.Wintermantel;J.Swings https://doi.org/10.1023/A:1010168011209
  24. Polym. Degrad. Stab. v.67 D.R.Chen;J.Z.Bei;S.G.Wang https://doi.org/10.1016/S0141-3910(99)00145-7
  25. React Funct. Polym. v.39 J.Jugar-Grodzinski https://doi.org/10.1016/S1381-5148(98)00054-6
  26. Prog. Polym. Sci. v.27 O.Masahiko https://doi.org/10.1016/S0079-6700(01)00039-9
  27. Adv. Mater. v.8 E.Chiellini;R.Solaro https://doi.org/10.1002/adma.19960080406
  28. Chem. Rev. v.99 E.U.Kathryn;M.C.Scott;S.L.Robert;M.S.Kevin https://doi.org/10.1021/cr940351u
  29. Science v.260 L.Robert https://doi.org/10.1126/science.8493529
  30. Nature v.388 B.M.Jeong;Y.H.Bae;D.S.Lee;S.W.Kim https://doi.org/10.1038/42218
  31. J. Biomed. Mater. Res. v.36 K.J.Lowery;K.R.Hamson;L.Bear;Y.B.Peng;R.Celaluce;M.L.Evans;O.J.Anglen;W.C.Allen https://doi.org/10.1002/(SICI)1097-4636(19970915)36:4<536::AID-JBM12>3.0.CO;2-8
  32. J. Biomed. Mater. Res. v.27 L.Zhang;C.C.Chu;I.H.Loh https://doi.org/10.1002/jbm.820271110
  33. Vasc. Surg. v.27 M.Strock;K.H.Orend;T.Schmitzrixen https://doi.org/10.1177/153857449302700601
  34. J. Am. Soc. Artif. Intern. Organs v.6 E.W.Merrill;E.W.Salzman
  35. J. Biomed. Mater. Res. v.23 J.H.Lee;J.Kopecek;J.D.Andrade https://doi.org/10.1002/jbm.820230306
  36. Int. J. Pharm. v.261 D.Mallarde;F.Boutignon;F.Moine;E.Barre;S.David;H.Touchet;P.Ferruti;R.Deghenghi https://doi.org/10.1016/S0378-5173(03)00272-2
  37. Pharm. Biotechnol. v.10 J.L.Cleland
  38. Eur. J. Pharm. BioPharm. v.50 R.Jain;C.T.Rhodes;A.M.Raikar;A.W.Malick;N.H.Shah https://doi.org/10.1016/S0939-6411(00)00062-X
  39. Drug Develop. Ind. Pharm. v.24 R.Jain;N.H.Shah;A.W.Malick;C.T.Rhodes https://doi.org/10.3109/03639049809082719
  40. Adv. Drug Deliv. Rev. v.38 N.J.Medlicott;I.G.Tucker https://doi.org/10.1016/S0169-409X(99)00013-7
  41. Macromolecules v.33 Y.Shibasaki;H.Sanada;M.Yokoi;F.Sanda;T.Endo https://doi.org/10.1021/ma992138b