Preparation and Properties of Poly(vinyl alcohol)/Chitosan Blend Films

폴리(비닐 알코올)/키토산 블렌드 필름의 제조 및 특성

  • 정민기 (영남대학교 섬유패션학부) ;
  • 김대선 (영남대학교 섬유패션학) ;
  • 최용혁 (영남대학교 섬유패션학) ;
  • 손태원 (영남대학교 섬유패션학) ;
  • 권오경 ((주)청우섬유 기술연구) ;
  • 임학상 (세명대학교 환경안전시스템공학부)
  • Published : 2004.05.01

Abstract

Poly(vinyl alcohol)(PVA)/chitosan blend films with non-toxicity, biodegradability, and biocom-patibility were prepared by solution casting. Variation of the physicochemical properties of the blend films was investigated through to several analysis methods. Examination of antibacterial properties revealed that bacterio-static ratios of all blend samples containing chitosan more than 10 wt% were greater than 99.9%. Moisture regain was increased with increasing chitosan content but the degree of swelling was decreased. Up to chitosan content 15 wt%t, the melting and crystallization temperature of blend films was increased with chitosan content. The blends containing chitosan content 10 and 15 wt% gave melting temperature 229 and 228$^{\circ}C$, respectively. However, the melting temperature was decreased if chitosan content exceeded 20 wt%. The mechanical properties of the blend films were increased with increasing chitosan content in both dry and wet states. The blend film including 15 wt% chitosan exhibited unusually high tensile strength.

독성이 없고 생분해성과 생체적합성을 가지는 폴리(비닐 알코올)/키토산 블렌드 필름들은 용액상태로 캐스팅 하여 제조하였다. 블렌드 필름들의 물리화학적 특성들의 변화는 여러 가지의 분석방법을 통해 조사하였다. 항균특성의 고찰에서 키토산이 10 wt% 이상 함유된 모든 블렌드 필름의 정균율은 99.9%로 우수하게 나타났다. 수분율은 키토산의 함량이 증가함에 따라 증가하나 팽윤도는 감소하였다. 키토산 함량이 15 wt% 내에서는 블렌드 필름의 용융온도와 결정화온도가 키토산의 함량에 따라 증가하였다. 또한, 키토산이 10, 15 wt% 함유된 블렌드 필름들은 용융온도가 각각 229와 228$^{\circ}C$로 순수 PVA보다 높은 값을 나타내었다. 그러나 키토산 함량이 20 wt% 이상일 경우 용융온도는 감소하였다. 블렌드 필름의 역학적 특성들은 습윤상태 및 건조상태 모두 키토산 함량이 증가함에 따라 증가한다 키토산 함량이 15 wt% 내에서 높은 인장강도를 나타낸다.

Keywords

References

  1. Radiat. Phys. Chem. v.39 M.Carenza
  2. Polymer Blends and Alloys M.J.Folkes;P.S.Hope
  3. Polymer v.38 N.Koyama;Y.Doi https://doi.org/10.1016/S0032-3861(96)00685-4
  4. Polymer v.38 C.Prahsarn;A.M.Jamieson https://doi.org/10.1016/S0032-3861(96)00639-8
  5. Polyvinyl Alcohol Fibers I.Sakurada
  6. Polyvinyl Alcohol : Development C.A.Finch
  7. J. Appl. Polym. Sci. v.76 C.M.Hassan;N.A.Peppas https://doi.org/10.1002/(SICI)1097-4628(20000628)76:14<2075::AID-APP11>3.0.CO;2-V
  8. Polymer v.33 Y.Azuma;N.Yoshie;M.Sakurai;Y.Inoue https://doi.org/10.1016/0032-3861(92)90690-X
  9. Chitin R.A.A.Muzzarelli
  10. Appl. and Envir. Microbilolgy v.66 J.Rhoades;S.Roller https://doi.org/10.1128/AEM.66.1.80-86.2000
  11. Rew. Macromol. Chem. Phys. v.37 S.Salmon;S.M.Hudson
  12. Chitin in Nature and Technology R.A.A.Muzzarelli;C.Jeuniaux;G.W.Gooday
  13. Polymer v.39 C.Peniche;C.Elvira;J.S.Roman https://doi.org/10.1016/S0032-3861(98)00059-7
  14. Macromolecules v.29 J.Xu;S.P.McCarthy;R.A.Gross https://doi.org/10.1021/ma951638b
  15. Macromol. Chem. Phys. v.40 K.S.Dinesh;R.R.Alok https://doi.org/10.1081/MC-100100579
  16. Polymer v.12 K.H.Kim;K.S.Kim;J.S.Lim;J.S.Shin;K.H.Chung
  17. Polymer v.27 Y.H.Kim;J.W.Choi;E.Y.Lee
  18. Kobunshi Ronbunshu v.40 M.Miya;S.Yoshikawa;R.Iwamoto;S.Mima https://doi.org/10.1295/koron.40.645
  19. J. Appl. Polym. Sci. v.44 S.Nakatsuka;A.L.Andrady https://doi.org/10.1002/app.1992.070440103
  20. J. Biomed. Mater. Res. v.39 T.Koyano;N.Minoura;M.Nagura;K.Kobayashi https://doi.org/10.1002/(SICI)1097-4636(19980305)39:3<486::AID-JBM20>3.0.CO;2-7
  21. J. Food Sci. v.63 C.Caner;P.J.Vergano;J.L.Wiles https://doi.org/10.1111/j.1365-2621.1998.tb15852.x
  22. Food Sci. Biotechnol v.7 J.W.Rhim;C.L.Weller;K.S.Ham
  23. Can., J. Chem. v.76 J.Z.Knaul;M.R.Kasaai
  24. Principles of Polymer Chemistry P.J.Flory
  25. J. Food. Sci. v.30 D.G.Rao
  26. Advances in Chitin and Chitonsan T.Tanigawa;Y.Tanaka;H.Sashiwa;H.Saimoto;Y.Shigemasa
  27. J. Appl. Polym. Sci. v.72 B.O.Jung;C.H.Kim;K.S.Choi;Y.M.Lee;J.J.Kim https://doi.org/10.1002/(SICI)1097-4628(19990624)72:13<1713::AID-APP7>3.0.CO;2-T
  28. Text. Res. J. v.29 I.C.Watt;K.H.Kenett;J.F.P.James https://doi.org/10.1177/004051755902901207
  29. Polymer v.14 K.Y.Kim;S.Y.Lee;D.S.Min;H.S.Chung;S.J.Hwang https://doi.org/10.1016/0032-3861(73)90166-3
  30. Macromol. Chem. Phys v.198 H.Jiang;J.Liang;J.T.Grant;W.Su;T.J.Bunning;T.M.Cooper;W.W.Adams https://doi.org/10.1002/macp.1997.021980519
  31. Polymer v.19 T.Sannan;K.Kurrita;K.Ogura;Y.Iwakura
  32. J. Appl. Polym. Sci. v.28 S.Mima;M.Miya;R.Iwamoto;S.Yoshikawa https://doi.org/10.1002/app.1983.070280607
  33. J. Polym. Sci. Polym. Phys. Ed. v.17 R.Iwamoto;M.Miya;S.Mima https://doi.org/10.1002/pol.1979.180170904
  34. J. Polym. Sci. Polym. Phys. Ed. v.22 M.Miya;R.Iwamoto;S.Mima https://doi.org/10.1002/pol.1984.180220615
  35. Macromol. Chem. Phys. v.199 K.Aoi;A.Takasu;M.Tsuchiya;M.Okada https://doi.org/10.1002/(SICI)1521-3935(19981201)199:12<2805::AID-MACP2805>3.0.CO;2-6
  36. J. Chem. Phys. v.10 P.J.Flory https://doi.org/10.1063/1.1723621
  37. J. Appl. Polym. Sci. v.42 M.Fuijyama;T.Wakino https://doi.org/10.1002/app.1991.070421012
  38. Macromolecules v.21 Y.Nishio;R.St.John Manley https://doi.org/10.1021/ma00183a016
  39. Polymer v.34 J.H.Kim;Y.M.Lee https://doi.org/10.1016/0032-3861(93)90441-C
  40. Encylopedia of Polymer Science and Enginnering D.R.Paul;J.W.Barlow;H.Keskkula