Growth and characterization of lead bromide: application to mercurous bromide

  • Kim, Geug-Tae (Department of Chemical & Polymer Engineering, Hannam University)
  • Published : 2004.04.01

Abstract

Mercurous Bromide ($Hg_2Br_2$) crystals hold promise for many acousto-optic and opto-electronic applications. This material is prepared in closed ampoules by the physical vapor transport (PVT) growth method. We investigate the effects of solutal convection on the crystal growth rate in a horizontal configuration for diffusive-convection conditions and purely diffusion conditions achievable in a low gravity environment. Our results show that the growth rate is decreased by a factor of one-fourth with a ten reduction of gravitational acceleration near y = 2.0 cm. For 0.1 $g_O$ the growth rate pattern exhibits relatively flat which is intimately related to diffusion-dominated processes. The growth rate nonuniformity is regardless of aspect ratio across the interfacial positions from 0 to 1.5. Also, the effect of a factor of the ten reduction in the gravitational acceleration is same to both Ar = 5 and 2. The enlargement in the molecular weight of B from 50 to 500 by a factor 4 causes a decrease in the maximum growth rate by the same factor, indicative of the effect of solutal gradients.

Keywords

References

  1. J. Crystal Growth v.137 Growth and characterization of mercurous halide crystals:mercurous bromide systme N.B.Singh;M.Gottlieb;G.B.Brandt;A.M.Stewart;R.Mazelsky;M.E.Glicksman https://doi.org/10.1016/0022-0248(94)91265-3
  2. Monatsh. Chem v.101 Dworsky;K.Komarek https://doi.org/10.1007/BF00908538
  3. Physico-Chemical Hydro-dynamics v.1 Fluid dynamics in crystal growth from vapor F.Rosenberger
  4. J. Crystal Growth v.89 Mercurous Bromide acoustooptic devices N.B.Singh;M.Gottlieb;A.P.Goutzoulis;R.H.Hopkins;R.Mazelsky https://doi.org/10.1016/0022-0248(88)90215-1
  5. J. Crystal Growth v.18 Convection in a chemical vapor transport process K.Klosse;P.Ullersma https://doi.org/10.1016/0022-0248(73)90195-4
  6. J. Crystal Growth v.57 Expansive convection in vapor transport across horizantal rectangular enclosures B.S.Jhaveri;F.Rosenberger
  7. NASA TM 105371 Thermal-solutal convection with conduction effects inside a rectangular enclosure Christopher Mennetrier;Walter M.B.duval
  8. J. Heat Mass Transfer v.34 Natural convection due to horizontal temperature and concentration gradients 1. Variable thermophysical property effects J.A.Weaver;R.Viskanta https://doi.org/10.1016/0017-9310(91)90080-X
  9. J. Crystal Growth v.82 Twodimensional model for thermal and solutal convection in multizone physical vapor transport G.P.Extremet;B.Roux;P.Bontoux;F.Elie https://doi.org/10.1016/S0022-0248(87)80023-4
  10. J. Fluid Mech v.92 Convective instabilities in a closed vertical cylinder heated from below. Part 1. Monocomponent gases J.M.Olson;F.Rosenberger https://doi.org/10.1017/S0022112079000781
  11. J. Fluid Mech v.92 Convective instabilities in a closed vertical cylinder heated from below. Part 2. Binary gas mixtures J.M.Olson;F.Rosenberger https://doi.org/10.1017/S0022112079000793
  12. J. Crystal growth v.51 Numerical modeling of diffusive-convective physical vapor transport in cylindrical vertical ampoules B.L.Markham;D.W.Greenwell;F.Rosenberger https://doi.org/10.1016/0022-0248(81)90419-X
  13. J. Chemical Vapor Deposition v.2 Convection in the physical vapor transport process-Ⅰ: Thermal Walter M.B. Duval
  14. the Proceeding of the ASME-WAM Winter Annual meeting, Fluid mechanics phenomena in microgravity v.AMD-174 no.FED-175 Transition to chaos in the physical transport process--Ⅰ: T Walter M.B. Duval
  15. J. Crystal Growth v.118 Effects of buoyancy-driven flow and thermal boundary conditions on physical vapor transport A.Nadarajah;F.Rosenberger;J.Alexander https://doi.org/10.1016/0022-0248(92)90048-N
  16. J. Crystal Growth v.167 Physical vapor transport of zinc-telluride by dissociative sublimation H.Zhon;A.Zebib;S.Trivedi;W.M.B.duval https://doi.org/10.1016/0022-0248(96)00305-3
  17. J. Crystal Growth v.171 Physical vapor transport revised F.Rosenberger;J.Ouazzani;I.Viohl;N.Buchan https://doi.org/10.1016/S0022-0248(96)00717-8
  18. PhysicoChemical Hydrodynamics v.11 Evaluation of transport conditions during PVT: mercurous chloride system N.B.Singh;R.Mazelsky;M.E.Glicksman
  19. J. Crystal Growth v.65 Interfacial transport in crystal growth, a parameter comparison of convective effects F.Rosenberger;G.Mller https://doi.org/10.1016/0022-0248(83)90043-X
  20. J. Thermophys. Heat Transfer v.4 Interaction of surface radiation with convection in crystal growth by physical vapor transport M.Kassemi;Walter M.B. Duval
  21. Proceedings of the 2nd Intl symposium on univalent mercury halides Chemical aspects of Hg₂X₂-decomposition, barogram-diagram and thermodynamic data H.Oppermann
  22. J. Crystal Growth v.94 Germanium epitaxial growth in closed ampoules Ⅱ. Numerical modeling B.Zappoli;C.Mignon;J.C.Launay;H.Debegnac