Effect of anisotropic diffusion coefficient on the evolution of the interface void in copper metallization for integrated circuit

  • Choy, J.H. (Department of Physic, Simon Fraser University)
  • Published : 2004.04.01

Abstract

The shape evolution of the interface void of copper metallization for intergrated circuits under electromigration stress is modeled. A 2-dimensional finite-difference numerical method is employed for computing time evolution of the void shape driven by surface diffusion, and the electrostatic problem is solved by boundary element method. When the diffusion coefficient is isotropic, the numerical results agree well with the known case of wedge-shape void evolution. The numerical results for the anisotropic diffusion coefficient show that the initially circular void evolves to become a fatal slitlike shape when the electron wind force is large, while the shape becomes non-fatal and circular as the electron wind force decreases. The results indicate that the open circuit failure caused by slit-like void shape is far less probable to be observed for copper metallization under a normal electromigration stress condition.

Keywords

References

  1. J. Phys. D v.32 Electromigration in integrated circuit conductors J.R.Lloyd https://doi.org/10.1088/0022-3727/32/17/201
  2. J. Appl. Phys. v.86 A physically based model of electromigration and stress-induced void formation in microelectronic interconnects R.J.Gleixner;W.D.Nix https://doi.org/10.1063/1.370990
  3. Appl. Phys. Lett. v.59 Activation energy for electromigration in Cu films C.W.Park;R.W.Vook https://doi.org/10.1063/1.106011
  4. Tech. Dig. Int. Electron Dev. Metting Evaluation of electromigration and stressmigration reliabilities of copper interconnects by a simple pulsed-current stressing technique H.Yamada;T.Hosji;T.Takewaki;T.Shibata;T.Ohmi;T.Nittam
  5. Tech. Dig. Int. Electron Dev. Meeting Large-electromigration-resistance coper interconnect technology for sub-halfmicron ULSI's T.Ohmi;T.Hoshi;T.Yoshie;T.Takewaki;M.Otsuki;T.Shibata;T.Nitta
  6. Appl. Phys. Lett v.61 Fatal electromigration voids in narrow aluminum-copper interconnect J.H.Rose https://doi.org/10.1063/1.108284
  7. J. Appl. Phys. v.72 Slit morphology of electromigration induced open circuit failures in fime line conductors J.E. Sanchez, Jr.;L.T.McKnelly;J.W. Morris, Jr. https://doi.org/10.1063/1.351484
  8. J. Appl. Phys. v.76 Electromigration failure by shape change of voids in bamboo lines E.Arzt;O.Kraft;W.D.Nix;J.E. Sanchez, Jr https://doi.org/10.1063/1.357734
  9. J. Appl. Phys. v.81 Electromigration-induced transgranular failure mechanisms in single-crystal aluminum interconnects Y.C.Joo;C.V.Thompson https://doi.org/10.1063/1.364454
  10. Appl. Phys. Lett. v.64 Electromigration instability: transgranular slits in interconnects Z.Suo;W.Wang;M.Yang https://doi.org/10.1063/1.111750
  11. J. Appl. Phys. v.85 Influence of anisotropic surface diffusivity on electromigration induced void migration and evolution D.R.Fridline;A.F.Bower https://doi.org/10.1063/1.369656
  12. J. Appl. Phys. v.85 Theoretical analysis of electromigration-induced failure of metallic thin films due to transgranular void propagation M.R.Gungor;D.Maroudas https://doi.org/10.1063/1.369532
  13. J. Appl. Phys. v.85 Influence of anisotropic surface diffusivity on electromigration induced void migration and evolution D.R.fridline;A.F.Bower https://doi.org/10.1063/1.369656
  14. J. Appl. Phys. v.90 Computer simulation of void growth dynamics under the action of electromigration and capillary forces in narrow thin interconnets T.O.Ogurtani;E.E.Oren https://doi.org/10.1063/1.1382835
  15. J. Phys.D v.31 Effect of microstructure on electromigration kinetics in Cu Lines A.Gladkikh;M.Karpovski;A.Palevski;Y.S.Kaganovskii https://doi.org/10.1088/0022-3727/31/14/003
  16. J. Electron. Mater. v.31 Mechanism of electromigration failure in submicron Cu interconnects N.L.Michael;C.U.Kim;Q.T.Jiang;R.A.Augur;P.Gillespie https://doi.org/10.1007/s11664-002-0035-5
  17. Microelectron. Reliab. v.40 Surface electromigration in copper interconnects N.D.McCusker;H.S.Gamble;B.M.Amstrong https://doi.org/10.1016/S0026-2714(99)00091-8
  18. IEEE Trans. Reilab. v.51 Electromigration reliability issues in dual-damascence Cu interconnections E.T.Ogawa;K.D.Lee;V.A.Blaschke;P.S.Ho https://doi.org/10.1109/TR.2002.804737
  19. Appl. Phys. Lett. v.78 Mechanisms for very long electromigration lifetime in dual-damascence Cu interconnections C.K.Hu;L.Gignac;S.G.Malhotra;R.Rosenberg;S.Boettcher https://doi.org/10.1063/1.1347400
  20. Microelectron. Engineering v.70 Reduced Cu interface diffusion by CoWP surface coating C.K.Hu;L.gignac;R.Rosenberg;E.Liniger;J.Rubino;C.Sambucetti;A.Stamper;A.Domenicucci;X.Chen https://doi.org/10.1016/S0167-9317(03)00286-7
  21. J. Appl. Phys. v.36 Morphological changes of a surface of revolution due to capillarityinduced surface diffusion F.A.Nichols;W.W.Mullins https://doi.org/10.1063/1.1714360
  22. J. Appl. Phys. v.77 Nonlinear stability analysis of the diffusional spheroidization of rods J.H.Choy;S.A.Hackney;J.K.Lee https://doi.org/10.1063/1.359207
  23. J. Appl. Phys. v.87 Electromigration-driven shape evolution of two-dimensional voids M.Schimschak;J.Krug https://doi.org/10.1063/1.371928