Focal Plane Irradiance from MCF in Millimeter Wave Systems
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ABSTRACT

Millimeter waves are potentially useful for high resolution ranging and imaging in low optical visibility
conditions such as fog and smoke. Also, They are used for wide band communications. However, it is
necessary to develop a theoretical and experimental understanding of millimeter wave propagation to assess
the performance of millimeter wave systems. The intensity fluctuations and mutual coherence function (MCF)
describe atmospheric effects on the millimeter wave propagation. Using the quasi-optical method (QOM), an
efficient and practical method was suggested to obtain the intensity distribution of the antenna focal plane
from MCF which can be determined using meteorological data.
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I. Introduction ths through the atmosphere in order to assess

the performance of millimeter wave systems. A

Millimeter waves are being used for wide general theory of beam wave propagation
band communication and other special purposes. through an atmosphere was presented in [1].
However, it is necessary to develop a theoretical ~ This theory accounts for the finite aperture size
and experimental understanding of electromag- ©f the source and describes the propagation of
netic wave propagation at millimeter waveleng- five different wave field configurations through
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an atmosphere taken to have mean and
fluctuating dispersive and absorbing components.
In [2] a general model of beam wave
propagation was extended and related to
common experimental quantities capable of being
measured via a parabolic reflector antenna. These
experimentally  measurable quantities ie,
intensity covariance angle of arrival and the
mutual coherence function are very important
because atmospheric effects on the propagation
of electromagnetic waves are usually described
in terms of these quantities. Of particular interest
here is the mutual coherence function defined as
the cross-correlation function of the complex
fields in a direction transverse to the direction of
propagation.

Following the Rytov method [3], the MCF, T,
is given by

A 7y, 7’2)=E0( 71)E6( rz)x
exp[——él—D( ry, 7yl )

where £¢ and D are an unperturbed field

component and a wave structure function

respectively. Here 7 is the position vector and E
represents the electric field. From Eq.(1), we see
that the MCF describes the loss of coherence of
an initially coherent wave propagating in a
turbulent medium, As a result, the MCF is
important for a number of practical applications.
It determines the S/N ratio of an optical
heterodyne detector, the limiting resolution
obtainable along an atmospheric path and the
mean irradiance distribution from an initially
coherent wave emanating from a finite aperture.
This MCF can be obtained from measured
temperature and humidity structure constants
using the wave structure function. However, it is
important to compute the focal plane irradiance
distribution from the given MCF to investigate
all weather performance of millimeter wave
systems. Therefore, an efficient method was
suggested to obtain the focal plane irradiance
distribution from the measured MCF.
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I1. Quasi-Optical Method(QOM)

The MCF is related to fluctuating
inhomogenities in the index of refraction of the
propagation medium, S0 meteorological
information is an important factor in assessing
all-weather performance of millimeter wavelength
systems. The transverse coherence length (defined
as the transverse separation at which the MCF is

reduced by e ~!) can be significantly reduced by

fog, smoke, etc. If we define © as the transverse
separation at which the atmospheric MCF is

reduced by e !, the minimum resolvable length
at distance Z from an observer is well known to

be Z/(kpy). Thus, a decrease of coherence
length means a decrease in the resolution and an
increase of beam wave spreading. The QOM can
be used here to get instantaneous focal plane
irradiance distribution from the MCF, that is, the
spatial Fourier transform of the product of the
electromagnetic fields at the aperture plane.

The intensity I(q) at a point q on the focal
plane is given by

Lo)= [k @2aNH] %=

[JEDECrYWn W ( r)x

expl—ikq- (r— r)/Ad*r d*r @

The electric field E is, however, a random
function due to the statistical nature of the
atmosphere through which it propagated. Thus
only the ensemble averaged intensity can be
considered. Ensemble averaged equation of (2)
yields

<Kgp>= [k/@rp1® [[Ir, 7 YW
W*( r)expl—ika- (r— 7 )Adir dtr ©)

where I's<E(7r) E*( r')> is the mutual
coherence function of the electric field at the
aperture plane. It is the mutual coherence
function that describes the effects of the
fluctuating  electrical  parameters of  the
atmosphere on the propagating electromagnetic



Focal Plane Irradiance from MCF in Millimeter Wave Systems

wave. Thus, if one can solve the integral
equation (3), the focal plane intensity can be
obtained from the measured MCF.

Changing variables in Eq.3) to p= r— r',
Eq.(3) becomes

<K@)d>= k@12 [ [I(r, r— o) W)
W* (r— p)expl —ikq- o/l d2p a?+(Y)

Here, the antenna transfer function, H 4(p)
simply represents the area of overlap of two
circles of diameter d, one having a center at the
origin of the 7 coordinate system and the other
having its origin at p in the same system. Thus

the r integration yields the area of overlap
between the two circles given by

HA(p)=fVKr) W (r—p)dir=
(d¥DL cos ~Hold)—(pld) (1= (ol ?) ] (O)

while the value of H A(P) is 0 for p>d

In the case that I{7, r—p)
of the aperture coordinate, that is, the statistical
inhomogenity is negligible, Eq.(4) decouples and
a simplified form can be derived to be

is independent

K= k?/@n FH)x
J, 1) H 4(0) JyCkoal Pode ©

ill. A Special Method for the Integration of
Rapidly Oscillatory Functions

{IKq)> in Eq. (6) is an integral of a rapidly
osciilatory function; ie., a Bessel function that
gives numerous local maxima and minima over
the range of integration. As o goes to infinity,
the integrand function looks less and less like a
polynomial of low degrees, and suggesting that
special methods should be used.

If Eq. (6) can be solved numerically, one can
theoretically predict the intensity distribution of
the focal plane. What one wants in computing

Eq. (6) is not methods that have small absolute
error, but methods that have small relative error.
Only a few methods are available and applicable
in this case. They are Longmans method [4],
Piessens quadrature formula [5] and Linzs
method based on Abel transform [6]. All these
methods have weak points when applied to Eq.
(6). Longmans method uses Gauss-Legendre
formulas, but this method cannot be used for the
integration involving Bessel functions of large
arguments. the Linzs method is inefficient
because it requires Abel integration. The use of
Piessens quadrature formula is acceptable but it
needs the storage of a large number of abscissae
and weights. Piessens method splits the integral
into a sum of subintegrals. For each subintegral
the Gaussian quadrature formula is used to
evaluate the subintegral from the given abscissae
and weights. This method is very useful if the
integration range is not large.

Even though the aperture plane is not large,
one can see that Piessens method is inefficient
because the argument of Bessel function is a
constant determined by variables k, q, f, p and
usually the values of (kq/f) is very large. This
problem cannot be solved by Piessens method
without storing a huge amount of numbers.
However, if one can approximate the Bessel
function as a rational function for large
arguments, the wusual methods such as the
Gauss-Legendre formula will be available. Thus a
compromise must be made to get accurate
results over the whole range, which means each
method must be used as the argument changes.

To reduce Eq. (6) to a numerically simpler
task, some changes and approximations must be

made. Let L=kq/f and o) =IXp) H 4(p), then
Eq. (6) becomes

D
CLY= k*Qx f?) [ "Ro) To(Lodedo

where D is the diameter of aperture plane, i.e,
the actual integration interval. The asymptotic
J 0 (x)

behaviour of the Bessel function,
suggests an approximation of the form,
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To(0)=V 2/(zx) ¢4 (x)sin[ ¢ ,(x)] ®)

where go(x)=1+R(x) and ¢4 (%)
=x+ 7/4+ Q(x). It is difficult to determine
Q() and R(x) so that Eq. (6) is a good
approximation over the whole range interval. For
this reason, we limit the approximation interval

of this method to [ ]'0‘5,00) where jo,s is the
fifth zero of zero order Bessel function. This
means that Eq. (7) must be divided into two
subintegrals as shown below,

Jos/L
aw= k2@ [ R0 1o (Lorodo+
f}D o) To(Ledodo
©)

where the second integral can be rewritten as

D DL—- ju5
[, S0 ToLovedo= [ S (o)

DL— jug
sin(p)dp+ fo C . (p)cos(p)dp (10)

where the integrands are described in the
following:

S (p)=F  (p)cos[G(p)], C.(p)=
F  (@sin[G(p)], G(p)= j 5+ (x/4)+
Qo+ jos), Frlo=V2rlp+ jg5)x
Aot o)/ LY ¢o(p+ jo5)/(x L?) -

The function, R(x) and Q(x) are the rational
functions represented by

k .

Z aisz
Qx) =—L :

x+ ZlbixZH—l

=

k

Z c,xz’
R(x)= =0

(12)

532

where a, b, ¢, and d are the coefficients (7].
The first part of Eq. (9) can be solved using
Piessen’s method. The integral can be written as
a sum of subintegrals; i.e.,

1/ szo's}‘(p/L) oJ y (p)odp
=1/ LZ s21(__,1) s+1

[ RolD) o1 o(@rode )

where each subintegral is approximated by
Gaussian quadrature formula.

IV. Resuits and Error Analysis

If the index of refraction of the medium can
be calculated from meteorological parameters
such as temperature and humidity structure
constants, the wave structure functions explained
for the different types of waves in ref. [2] will be
clearly determined. The index of refraction

structure parameter, C 2,, can be defined as a
mean square statistical average of the difference
in the index of refraction between two points
separated by a distance r, given by

Cil=C((n,—n)®/r% (14)

where the angle bracket denotes an ensemble

average. Since C 2,, is difficult to measure
directly at millimeter wavelengths, a convenient
alternative is to measure the temperature

structure parameter, C % which is related by

C%=(7.9x10 P/ THC% (15)

where P is the atmospheric pressure in
millibars and T is the atmospheric temperature
in degree Kelvin. Using the MCF for a plane
wave propagating through the atmosphere, ie.,

Ip)=Aexp(— b p°®) (16)
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where 5=1.456 #2RC? and R and k repre-
sents the total propagation distance and the
wave number respectively.

For the given MCF, the intensity distribution
in the focal plane was obtained as bvaries. The
results in Figure 1 and Figure 2 show that the
intensity is blurred by atmospheric effects. This
blurring parameter is denoted as b.

One can expect that received intensity pattern
will spread out more for a larger b. If b equals
zero, the intensity is not affected by atmospheric
conditions and just describes the diffraction
pattern of a circular aperture which is given by

(2kD) * ] 2(0.5kDq/ )
(4kDq) ? (17)

Kg)=

Using Eq. (17), numerical errors of the
suggested method to obtain intensity were
checked against the exact solution available for
b=0.0 . Results are given in Figure 3 and it
shows that the suggested method is accurate
enough except the vicinity of null regions where
the percentage errors are inherently exaggerated
as having large values.
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Fig. 1 The intensity distribution of a focal plane with
the aperture diameter of 20 m for b=0.0, 0.2
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Fig. 2 The intensity distribution of a focal plane with
the aperture diameter of 6.0 m for b=0.0. 0.2
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Fig. 3 The percentage error between the exact
solution and the suggested approximation method
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V. Concluding Remarks

In this paper, a practical method is derived
and suggested to obtain the intensity distribution
of a focal plane from the experimentally
measured MCF. These results can be used to
confirm whether the experimentally measured
MCF is correct. The suggested method is very
convenient and simple to predict the intensity
distribution from the MCF measurements using
weather data. This will enable to check the
accuracy of existing weather turbulence model in
wave propagation by comparing with the
intensity from the flux measurements. Also, it is
shown that errors of this approximation method
can be considered to be negligible practically.
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