암반 불연속면의 거칠기 특성 - 조.중.세립질 화강암을 중심으로 -

Characterization of Fracture Roughness in Coarse.medium.fine Grained Granite

  • 발행 : 2004.06.01

초록

이 연구는 지하수유동에 영향을 주는 조ㆍ중ㆍ세립질 화강암 불연속면 거칠기의 특성을 비교한 것이다. 공초점 레이저 현미경으로 관찰된 거칠기 데이터는 스펙트럼 분석과 고속푸리에 변환에 의해 해석되었다. 또한 노이지가 제거된 거칠기 데이터에 대하여 거칠기 특성을 정량화하기 위하여 프랙탈 해석에 적용해 보았다. 이를 위해 조ㆍ중ㆍ세립질 화강암 코어를 대상으로 브라질리안 시험으로 인공 단열을 발생시켰다. 측정은 전체 12개의 공시체에서 36개의 조사선에서 실시되었다. 공초점 레이저 현미경을 사용하여 연속적인 거칠기를 이산 데이터로 표현할 수 있으며, 이렇게 하여 얻어진 이산데이터를 바탕으로 고속 푸리에 변환을 실시한 결과 제2 고조파 성분이 가장 큰 값을 보이고 있다. 또한 스펙트럼 에너지 분포는 조립질 공시체에서 0.9853, 중립질 공시체에서 1.0792, 세립질 공시체에서 0.6794의 평균값을 보이고 있으며, 이는 프랙탈 해석에서와 마찬가지로 거칠기가 클수록 저주파수 영역대에서 고조파의 에너지 분포가 높게 나타남을 알 수 있다.

Purpose of this study is to quantitatively characterize the fracture roughness which was measured with a confocal laser scanning microscope. The roughness discrete data measured by confocal laser microscope were analyzed by spectral analysis and fast Fourier transform (FFT).The roughness data by used noise reduction filter were applied for fractal analysis to describe roughness features quantitatively. Artificial fractures created by Brazilian test on granites were used to measure fracture roughness under the confocal laser scanning microscope. Measurements were performed along three scan lines on each fracture surface. 36 scan lines were determined on 12 specimens in total. Features of roughness showed that coarse and medium grained granites tend to more rough features than those of fine grained granites. Continuous analog data of roughness is possible to described as discrete data of measure roughness with a fixed interval under the confocal laser microscope. Results of FFT with the measured data showed the highest values on the second harmonics. Distribution of average amplitude of second harmonics was observed 0.9853 in coarse grained granite, 1.0792 in medium grained granite and 0.6794 in fine grained granite. This indicates that the larger roughness has the higher energy of harmonics as the result of fractal analysis in low frequency zone.

키워드

참고문헌

  1. 대한지질공학회 v.4 no.2 암반의 손상역학 해석에 있어서 Fractal 차원의 적용에 관한 연구 정교철;김영기
  2. Fractals everywhere second edition Barnsley,M.F.
  3. Mathematical Geology v.30 no.8 Quantification of natural fracture surfaces usin fractal geomethy Develi,K.;Babadagi,T. https://doi.org/10.1023/A:1021781525574
  4. Computer & Geosciences v.37 A new computer-controlled surface-scanning device for measurement of fracture surface roughness Develi,K.;Babadagli,T.;Comlekci,C.
  5. Armenia, Using Ambient Noise Observations, Bulletin of the Seismological Society of America v.85 no.1 Earthquake Site-Response Study in Giumri (Formerly Leninakan) Field,E.H.;Clement,A.C.;Jacob,K.H.;Aharonian,V.;Hough,S.E.;Friberg,P.A.;Babaian,T.O.;Karapetian,S.S.;Hovanessian,S.M.;Abramian,H.A.
  6. Physics Letter A v.255 Critical behavior in flow through a rough-walled channel Genabeek,O.;Rothman,D.H.
  7. Engineering Geology v.48 Box fractal dimension as a measure of statistical homogeneity of jointed rock mass Kulatilake,P.H.S.W.;Fiedler,R.;Panda,B.B. https://doi.org/10.1016/S0013-7952(97)00045-8
  8. Hydrology v.229 Use of hydrologic time series data for idenrification of recharge mechanism i a fractured bedrock aquifer system Lee,J.Y.;Lee,K.K.
  9. Rock Mechanics & Mining Sciences v.37 A random field model for surface roughness and aperture of rock fractures Lanaro,F. https://doi.org/10.1016/S1365-1609(00)00052-6
  10. Engineering Geology v.65 3D characterization of coarse aggergates Lanaro,F.;Tolppanen,P. https://doi.org/10.1016/S0013-7952(01)00133-8
  11. Geosciences Journal v.4 no.2 Fractal dimension for the cracks of compacted clay liners in the landfill cover system in winter condition Lee,J.Y.;Miller,C.J. https://doi.org/10.1007/BF02910129
  12. Rock Mech. Rock Engng. v.27 no.3 Natural fracture profiles, fractal dimension and joint roughness coefficients Odling,N.E. https://doi.org/10.1007/BF01020307
  13. Rock Meshanics & Mining Sciences v.35 An improved model for hydromchanical coupling during shearing of rock joints Olsson,R.;Barton,N.
  14. Introduction to Signal Processing Orfanidis,S.J.
  15. Rock Mech. Min. Sci. & Geomech. Abstr. v.32 no.2 Difficulties with using continuous fractal theory for discontinuity surfaces Outer,A.D.;Kaashoek,J.F.;Hack,H.R.G.K. https://doi.org/10.1016/0148-9062(94)00025-X
  16. Hydrology v.168 Study of hydrographs of karstic aquifers by means of correlation and cross-spectral analysis Padilla,A.;Pulido-Bosch,A. https://doi.org/10.1016/0022-1694(94)02648-U
  17. Journal o fContaminant Hydrology v.46 Experimental study of the transport properties of rough self-affine fractures Plouraboue,F.;Kurowski,P.;Boffa,J.M.;Hulin,J.P.;Roux,S. https://doi.org/10.1016/S0169-7722(00)00134-0
  18. Numerical Recipes in Pascal Press,W.H.;Flannery,B.P.;Teukolsky,S.A.;Vetterling,W.T.
  19. Fractals and chaos in geology and gephysics Turcotte,D.L.