DOI QR코드

DOI QR Code

Agar 배지를 이용한 건조 및 염 처리에 대한 벼 식물체의 근계 변화

Changes of Root System in Rice (Oryza sativa L.) Plant Under Salt- and Drought- Stressed Agar Medium Conditions.

  • 강동진 (경북대학교 농업과학기술연구소) ;
  • 석정용일 (일본대학 생물자원과학부) ;
  • 김길웅 (경북대학교 농업생명과학대학 농학과) ;
  • 이인중 (경북대학교 농업생명과학대학 농학과)
  • 발행 : 2004.06.01

초록

본 실험은 고체배지를 이용한 새로운 실험방법을 이용하여 건조 및 염 스트레스에 대한 식물체의 형태학적인 특성을 뿌리신장률, 근단구조, 물질생산 등의 측면에서 조사하였다. PEG 및 NaCl 처리조건에서 처리 농도가 증가할수록 벼 식물체의 뿌리신장이 현저하게 저하되었으며, PEC 및 NaCl 처리에 따른 벼 식물체의 뿌리는 methyl-lignin 축적에 의한 리그닌화가 진행되었으며, 수분결핍을 극복하려는 기작으로 표피세포를 변형시킨 근모의 발생이 관찰되었다. 또한 PEG 및 NaCl 처리에 의한 벼 식물체의 지상부와 지하부의 건물 생산량의 현저한 감소는 지상부보다 지하부에서 뚜렷하였으며, 그 결과 PEG 및 NaCl 처 처리농도를 증가시킴에 따라 TR율의 증가를 보였다. 상기의 결과로부터 건조 및 염 처리를 한 고체배지를 이용함으로써 벼의 경우 스트레스 처리 전 약 2주간 유묘를 생육시키는 양액재배에 비해 발아기의 각종 스트레스에 대한 식물체 반응의 관찰과 내성 특성 검정에 유용할 것으로 사료된다.

This study was investigated the changes of root length, tissue structure of root tip, and dry matter production of a Dongjinbyeo (DJ) cultivar subjected to 0.4 % agar medium with various concentration of NaCl (salt stress)- and polyethylene glycol 6000 (PEG, drought stress). Root length and dry weight of DJ plant were declined along the high concentration of PEG and NaCl in rice plants. To elucidate the changes of tissue structure in root tip to PEG- and NaCl-treatments, we examined the microscopic observation of root tip in NaCl- and PEG-treated rice plants using Toluidine blue O. By Toluidine blue O staining, methyl-lignin accumulation was found in the epidermis and outer cortex of the elongation zone at an early stage of PEG treatment, whereas was found only the outer cortex of the elongation zone of NaCl-treated root tip. The epidermis of NaCl-treated root tip became soften instead of methyl-lignin accumulation. TR ratio was increased along the high concentration in PEG- and NaCl-treated rice plant as a result of inhibited root elongation under PEG- and NaCl-treatment. From these morphological changes in root stimulated by drought and salt stress, we suggest that agar medium is useful to identify tolerant variety in germination stage under stressful environments.

키워드

참고문헌

  1. Ann. Bot. v.89 How plants cope with water stress in field: Photosynthesis and growth Chaves,M.M.;J.S.Pereira;J.Maroco;M.L.Rodrigues;C.P.P.Ricardo;M.L.Osorio;I.Carvalho;T.Faria;C.Pinheiro https://doi.org/10.1093/aob/mcf105
  2. Kor. Environ. Agric. v.17 Growth and histological characteristics of barley (Hordium vulgare L.) seedling to NaCl stress Cho,J.U.;C.S.Kim;S.Y.Lee;K.S.Park
  3. Ann. Bot. v.89 Photosynthetic carbon reduction and carbon oxidation cycles are the main electron sinks for photosystem II activity during a mild drought Cornic,G.;C.Fresneau https://doi.org/10.1093/aob/mcf064
  4. J. Exp. Bot. v.49 Comparative effects of water, heat and light stresses on photosynthetic reactions in Sorghum bicolor(L.) Moench Jagtap,V.;S.Bhargava;P.Streb;J.Feierabend https://doi.org/10.1093/jexbot/49.327.1715
  5. J. Exp. Bot. v.52 Initiation and regulation of water deficit-induced abscisic acid accumulation in maize leaves and roots: cellular volume and water relations Jia,W.;J.Zhang;J.Liang https://doi.org/10.1093/jexbot/52.355.295
  6. J. Plant Res. v.110 Highly sensitive analytical method for aluminum movement in soybean root through lumogallion staining Kataoka,T.;M.Mori;T.M.Nakanishi;S.Matsumoto;A.Uchiumi https://doi.org/10.1007/BF02524927
  7. Kor. J. Crop Sci. v.42 Effect of water stress on leaf water potential, photosynthesis and root development in tobacco plant Lee,S.G.;Y.W.Seo;J.W.Johnson;B.H.Kang
  8. Kor. Environ. Agric. v.17 Effects of salt stress on photosynthesis, free proline content and ion content in tobacco Lee,S.G.;S.S.Shin,Y.S.Seok;G.K.Bae
  9. A manual of experiments for agriculture Method of cell and tissue experiments Nakamura,M.;H.Takahashi;T.Tabuchi;K.Kanahama;A.Karasawa;Hashiba,T.(ed.);K.Kanahama(ed.)
  10. J. Radioanal. Nucl. Chem. v.249 $^{18}F$ used as tracer to study water uptake and transport imaging of a cowpea plant Nakanishi,T.M.;K.Tanoi;H.Yokota;D.J.Kang;R.Ishii;S.S.Ishioka;S.Watanabe;A.Osa;T.Sekine;S.Matsuhashi;T.Ito;T.Kume;H.Uchida;A.Tsuji https://doi.org/10.1023/A:1013217425209
  11. Plant Soil v.146 Arguments for the use of physiological criteria for improving the salt tolerance in crops Nible,C.L.;M.E.Rogers https://doi.org/10.1007/BF00012001
  12. Dev. Plant Soil Sci. v.45 The effects of short and long term aluminum treatment on potassium fluxes in roots of an aluminum sensitive cultivar of barley Nichol,B.E.;L.Oliveria;A.D.M.Glass;M.Y.Siddiqi
  13. Ann. Bot. v.89 Proline metabolism and transport in maize seedlings at low water potential Raymond,M.J.;N.Smirnoff https://doi.org/10.1093/aob/mcf082
  14. Plant Physiol. v.12 Abscisic acid accumulation maintains maize primary root elongation at low water potentials by restricting ethylene production Spollen,W.G.;M.E.LeNoble;T.D.Samuels;N.Berstein;R.E.Sharp
  15. Plant Physiol. v.127 Hormonal changes in the grains of rice subjected to water stress during grain filling Yang,J.;J.Zhang;Z.Wang;Q.Zhu;W.Wang https://doi.org/10.1104/pp.127.1.315
  16. Annu. Rev. Plant Biol. v.53 Salt and drought stress signal transduction in plants Zhu,J.K.