MINIMUM PERMANENTS OF DOUBLY STOCHASTIC MATRICES WITH k DIAGONAL $p \times p$ BLOCK SUBMATRICES

EUN-YOUNG LEE

ABSTRACT. For positive integers k and $p \geq 3$, let

$$D = egin{bmatrix} 0 & 0 & J_{2,kp} & & & \ 0 & 0 & & & & \ & & J_p & & & \ & & J_p & O & & \ & & & J_{p} & & \ & & & J_p & & \ \end{bmatrix}$$

where J_p is the $p \times p$ matrix whose entries are all 1. Then, we determine the minimum permanents and minimizing matrices over (1) the face of $\Omega(D)$ and (2) the face of $\Omega(D^*)$, where

$$D^* = D + \left[\begin{array}{cc} J_2 & O \\ O & O \end{array} \right].$$

1. Introduction

Let Ω_n denote the set of all *n*-square doubly stochastic matrices. This set is known to be a convex polytope of dimension $n^2 - 2n + 1$ in the Euclidean n^2 -space. For an $n \times n$ matrix $A = [a_{ij}]$, the permanent of A, per A, is defined by

$$per A = \sum_{\sigma \in S_n} a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n\sigma(n)},$$

where S_n stands for the symmetric group on the set $\{1, 2, ..., n\}$. For an $n \times n$ (0, 1)-matrix D, let $\Omega(D) = \{X \in \Omega_n | X \leq D\}$, where $X \leq D$ means that every entry of X is less than or equal to the corresponding entry of D. Then, $\Omega(D)$ forms a face of Ω_n and every face of Ω_n is

Received February 6, 2003.

²⁰⁰⁰ Mathematics Subject Classification: 15A15.

Key words and phrases: permanent, doubly stochastic matrix, barycentric matrix.

defined in this fashion [2]. Let $\mu(D)$ denote the minimum permanent over $\Omega(D)$. A matrix $A \in \Omega(D)$ is called a *minimizing matrix* over $\Omega(D)$, if $\operatorname{per} A = \mu(D)$. The set of all minimizing matrices over $\Omega(D)$ is denoted by $\operatorname{Min}(D)$.

Since the vertices of the polytope $\Omega(D)$ are the permutation matrices P such that $P \leq D$, the barycenter of $\Omega(D)$ is the matrix

$$B_D = \frac{1}{\text{per}D} \sum_{P \le D} P,$$

where the summation runs over all permutation matrices $P \leq D$ and $\Omega(D)$ is called barycentric if $B_D \in \operatorname{Min}(D)$ [1]. For an $n \times n$ matrix A and for $\alpha, \beta \subseteq \{1, 2, \ldots, n\}$, let $A[\alpha|\beta]$ denote the $|\alpha| \times |\beta|$ submatrix of A lying in the rows α and columns β , and let $A(\alpha|\beta)$ denote the $(n-|\alpha|) \times (n-|\beta|)$ submatrix of A lying in the rows complementary to α and columns complementary to β , where $|\gamma|$ denote the number of elements in the set $\gamma \subseteq \{1, 2, \ldots, n\}$. Let I_n denote the identity matrix of order n and $J_{m,n}$ denote the $m \times n$ matrix of 1's. The matrix $J_{n,n}$ is denoted by J_n for brevity and each column of J_n is denoted by $\mathbf{e_n}$. Let $E_{i,j}$ denote the n-square matrix of zeros and ones with exactly one nonzero entry at the (i,j)-position. For $i=1,2,\ldots,k$ and positive integers n_i such that $\sum_{i=1}^k n_i = n$, let A_i is the $n_i \times n_i$ matrix and let

is called block diagonal. Notationally, such matrix is often indicated as $A = A_1 \bigoplus \cdots \bigoplus A_k$ or, more briefly, $\bigoplus_{i=1}^k A_i$; this is called the direct sum of the matrices A_i .

Let for $n \geq 3$

$$U_{2,n} = \begin{bmatrix} O_2 & J_{2,n} \\ J_{n,2} & I_n \end{bmatrix}, \ V_{2,n} = \begin{bmatrix} J_2 & J_{2,n} \\ J_{n,2} & I_n \end{bmatrix}.$$

Seok-Zun Song [5] proved that

$$\min\{\operatorname{per} A | A \in \Omega(U_{2,n})\} = \frac{2(n-1)(n-2)^{n-2}}{n^{n+1}} \ (n \ge 3)$$

and the minimum is achieved uniquely at

$$\left[egin{array}{cc} O_2 & rac{1}{n}J_{2,n} \ rac{1}{n}J_{n,2} & rac{n-2}{n}I_n \end{array}
ight].$$

He also proved that

$$\min\{\operatorname{per} A|\ A\in\Omega(U_{2,n})\}=\min\{\operatorname{per} A|\ A\in\Omega(V_{2,n})\}.$$

For i = 1, 2, ..., k and positive integers n_i such that $\sum_{i=1}^k n_i + 1 = n$, let $U_{1,n}$ denote the $n \times n$ (0,1)-matrix defined by

$$U_{1,n}[1,2,\ldots,n|1] = U_{1,n}[1|1,2,\ldots,n]^t = \begin{bmatrix} O \\ \mathbf{e_{n-1}} \end{bmatrix}$$

and

$$U_{1,n}(1|1) = \bigoplus_{i=1}^{k} J_{n_i}.$$

Seok-Su Do and S. H. Hwang [3] proved that

$$\min\{\operatorname{per} A|\ A\in\Omega(U_{1,n})\} = \alpha \prod_{i=1}^k \frac{n_i!}{(\alpha+n_i)^{n_i}}$$

and the minimum is achieved uniquely at

$$\begin{bmatrix} O & \frac{\alpha}{\alpha+n_1}J_{1,n_1} & \frac{\alpha}{\alpha+n_2}J_{1,n_2} & \cdots & \frac{\alpha}{\alpha+n_k}J_{1,n_k} \\ \frac{\alpha}{\alpha+n_1}J_{n_1,1} & \frac{n_1}{\alpha+n_1}J_{n_1} & & & & \\ \frac{\alpha}{\alpha+n_2}J_{n_2,1} & & \frac{n_2}{\alpha+n_2}J_{n_2} & O & & & \\ \vdots & & & \ddots & & \\ \vdots & & & O & & & \\ \frac{\alpha}{\alpha+n_k}J_{n_k,1} & & & & \frac{n_k}{\alpha+n_k}J_{n_k} \end{bmatrix},$$

where α be the unique positive solution $\varphi_{\sigma}(x) = \sum_{i=1}^{k} \frac{n_i}{x+n_i} - n + 2 = 0$.

Also, they proved the next result as follows: let $C = U_{1,n} + E_{1,1}$. For $n \geq 3$, the permanent function attains its minimum matrix over $\Omega(C)$ uniquely the above matrix. In this paper, we prove the following results:

For a positive integer k and $p \geq 3$, let

$$D = \begin{bmatrix} 0 & 0 & & & & & \\ 0 & 0 & & J_{2,kp} & & & \\ & & J_p & & & \\ & & & J_p & O & & \\ & & & & & \ddots & \\ & & & & & J_p \end{bmatrix}$$

Then we determine the minimizing matrix and the minimum permanent over;

- (1) the face $\Omega(D)$ of the polytope of doubly stochastic matrices,
- (2) the face $\Omega(D^*)$ of the polytope of doubly stochastic matrices, where

$$D^* = D + \left[\begin{array}{cc} J_2 & O \\ O & O \end{array} \right].$$

2. Preliminaries

In this section, we introduce the well-known definitions and useful lemmas. An $n \times n$ matrix is called *partly decomposable* if it contains an $s \times (n-s)$ zero submatrix. A square matrix which is not partly decomposable is called *fully indecomposable*.

LEMMA 1. [4] Let $D = [d_{ij}]$ be an $n \times n$ fully indecomposable (0, 1)matrix and let $A = [a_{ij}] \in \text{Min}(D)$. Then A is fully indecomposable and
for i, j with $d_{ij} = 1$, it holds that $\text{per}A(i|j) \ge \text{per}A$ where the inequality
is an equality if $a_{ij} > 0$.

LEMMA 2. [4] Let $D = [\mathbf{d}_1, \mathbf{d}_2, \dots, \mathbf{d}_n]$ be an $n \times n$ (0,1)-matrix and let $A = [\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n] \in \text{Min}(D)$. If $\mathbf{d}_{j_1} = \dots = \mathbf{d}_{j_k}$, then the matrix obtained from A by replacing each of $\mathbf{a}_{j_1}, \dots, \mathbf{a}_{j_k}$ by $(\mathbf{a}_{j_1} + \dots + \mathbf{a}_{j_k})/k$ also belongs to Min(D).

LEMMA 3. For $p \geq 3$ and $t \geq 1$, let $f(t) = t^2 - \frac{p+1}{p-1}t + 1$. Then, the value of function f(t) is nonnegative.

Proof. Clearly, f(t) is differentiable and continuous on $t \ge 1$. Since $\frac{p+1}{2(p-1)} < 1$, f(t) is increasing function on $t \in [1, \infty)$. Then, $f(1) = 1 - \frac{p+1}{p-1} + 1 = \frac{p-3}{p-1} \ge 0$. Hence, the function f(t) is always nonnegative. \square

3. Results

For positive integer k and $p \geq 3$, let U be the $(kp + 2) \times (kp + 2)$ matrix defined by

Theorem 4. For $k \geq 1$ and $p \geq 3$, the minimum permanent over the face $\Omega(D)$ is $\frac{(2kp-p-1)(p!)^k(pk-2)^{pk-2}}{p^{2pk-1}k^{pk+1}}$ and the minimum value is achieved uniquely at U.

Proof. Let $X \in \Omega(D)$ be a minimizing matrix and let

$$A = (I_2 \oplus \bigoplus_{i=1}^k J_p) X (I_2 \oplus \bigoplus_{i=1}^k J_p).$$

Then,

$$A = \begin{bmatrix} 0 & 0 & a_1 J_{2,p} & & a_k J_{2,p} \\ 0 & 0 & & & & \\ \hline a_1 J_{2,p} & & b_1 J_p & & & \\ & & & b_2 J_p & O & \\ & & O & & \ddots & \\ a_k J_{2,p} & & & & b_k J_p \end{bmatrix}$$

for some real numbers a_i , b_i and by Lemma 2, A is also a minimizing matrix over $\Omega(D)$.

Without loss of generality, we may assume that $a_1 \geq a_2 \geq \cdots \geq a_k$ and let $z_i = \frac{a_i}{b_i}$ for $i = 1, 2, \ldots, k$. Since D is fully indecomposable, by Lemma 1, $a_i \neq 0$ and $b_i \neq 0$ for all $i = 1, 2, \ldots, k$. Let B = A(1, 2|1, 2). Then

$$perB = \prod_{i=1}^{k} p! b_i^p.$$

For $i=1,2,\ldots,k$, let $T_0=\{1,2\}$ and $T_i=\{l\in \mathbf{Z}|\ (i-1)p+3\leq l\leq ip+2\}$. Then, it is clear that if p,q are integers in the same T_i , then

$$\mathrm{per}A(1|p)=\mathrm{per}A(1|q).$$

For $j = 4, p + 3, 2p + 3, \ldots, p(k - 1) + 3$, the matrix A(1, 2|3, j) is equal to the one obtained from B by replacing the first two columns with

$$A[1,2|1,2,\ldots,n]^t = A[1,2,\ldots,n|1,2] = \begin{bmatrix} a_1J_{p,2} \\ \vdots \\ a_kJ_{p,2} \end{bmatrix}.$$

Since we notice that A(1,2|3,j) is partly decomposable for $j=4, p+3, \ldots p(k-1)+3$, we have

$$\begin{aligned} &\operatorname{per} A(1|3) \\ &= [(p-1)a_1\operatorname{per} A(1,2|3,4) + pa_2\operatorname{per} A(1,2|3,p+3) \\ &+ pa_3\operatorname{per} A(1,2|3,2p+3) + \dots + pa_k\operatorname{per} A(1,2|3,p(k-1)+3)]\operatorname{per} B \\ &= [(p-1)a_1[(p!)^ka_1^2b_1^{p-2}b_2^p \cdots b_k^p] + pa_2[(p!)^k2a_1a_2b_1^{p-1}b_2^{p-1} \cdots b_k^p] \\ &+ pa_3[(p!)^k2a_1a_3b_1^{p-1}b_2^pb_3^{p-1} \cdots b_k^p] + \dots \\ &+ pa_k[(p!)^k2a_1a_kb_1^{p-1}b_2^p \cdots b_k^{p-1}]\operatorname{per} B. \end{aligned}$$

Since $per B = \prod_{i=1}^k p! b_i^p$,

(1)
$$\frac{\operatorname{per} A(1,2|3,4)}{\operatorname{per} B} = \frac{(p!)^k a_1^2 b_1^{p-2} b_2^P \cdots b_k^p}{\prod_{i=1}^k p! b_i^p} = \frac{a_1^2}{b_1^2},$$

and for $j = p + 3, 2p + 3, 3p + 3, \dots, p(k - 1) + 3$

(2)
$$\frac{\operatorname{per} A(1,2|3,j)}{\operatorname{per} B} = \frac{(p!)^k 2a_1 a_j b_1^{p-1} b_j^{p-1} \prod_{i \neq j} b_i^p}{\prod_{i=1}^k p! b_i^p} = \frac{2a_1 a_j}{b_1 b_j}.$$

By (1) and (2), we can write that

$$per A(1|3)$$
= $[(p-1)a_1(\frac{a_1}{b_1})^2 + pa_2(\frac{2a_1a_2}{b_1b_2}) + \dots + pa_k(\frac{2a_1a_k}{b_1b_k})]per B$
= $[(p-1)a_1z_1^2 + 2pa_2z_1z_2 + \dots + 2pa_kz_1z_k]per B$.

By similar method,

$$per A(1|p(k-1)+3)$$
= $[2pa_1z_1z_k + 2pa_2z_2z_k + \dots + 2pa_{k-1}z_{k-1}z_k + (p-1)a_kz_k^2]per B.$

By Lemma 1, we see that

$$0 = \operatorname{per} A(1|3) - \operatorname{per} A(1|p(k-1)+3)$$

$$= [(z_1 - z_k)[(p-1)a_1z_1 + 2pa_2z_2 + \cdots + 2pa_{k-1}z_{k-1} + (p-1)a_kz_k] - (p+1)z_1z_k(a_1 - a_k)]\operatorname{per} B$$

$$= [(z_1 - z_k)[(p-1)a_1z_1 + 2p\sum_{i=2}^{k-1} a_iz_i + (p-1)a_kz_k]$$

$$-(p+1)z_1z_k(a_1 - a_k)]\operatorname{per} B.$$

Since $z_1 - z_k = \frac{1}{ph_1h_k}(a_1 - a_k)$ and by Lemma 3, we can obtain that

$$0 = \operatorname{per} A(1|3) - \operatorname{per} A(1|p(k-1)+3)$$

$$= \left[\frac{(a_1 - a_k)}{pb_1b_k} [(p-1)a_1z_1 + 2p\sum_{i=2}^{k-1} a_iz_i + (p-1)a_kz_k] \right]$$

$$-(p+1)z_1z_k(a_1 - a_k)]\operatorname{per} B$$

$$= (a_1 - a_k) \left[\frac{1}{pb_1b_k} [(p-1)a_1z_1 + 2p\sum_{i=2}^{k-1} a_iz_i + (p-1)a_kz_k] \right]$$

$$-(p+1)z_1z_k]\operatorname{per} B$$

$$= (a_1 - a_k) \left[\frac{(p-1)}{pb_k} z_1^2 - (p+1)z_1z_k + \frac{(p-1)}{pb_1} z_k^2 \right]$$

$$+ \frac{2}{b_1b_k} \sum_{i=2}^{k-1} a_iz_i]\operatorname{per} B$$

$$> (a_1 - a_k) \left[(p-1)z_1^2 - (p+1)z_1z_k + (p-1)z_k^2 \right]$$

$$+ \frac{2}{b_1b_k} \sum_{i=2}^{k-1} a_iz_i]\operatorname{per} B$$

$$= (a_1 - a_k) \left[(p-1)z_k^2 \left(\frac{z_1}{z_k} \right)^2 - \frac{p+1}{p-1} \left(\frac{z_1}{z_k} \right) + 1 \right] + \frac{2}{b_1b_k} \sum_{i=2}^{k-1} a_iz_i]\operatorname{per} B$$

$$> 0,$$

which is a contradiction. Since A is doubly stochastic matrix, $a_i = \frac{1}{pk}$ and $b_i = \frac{pk-2}{p^2k}$ for all i = 1, 2, ..., k. Hence, we have $\text{per}A = \frac{(2kp-p-1)(p!)^k(pk-2)^{pk-2}}{p^{2pk-1}k^{pk+1}}$. So far we have proved that for any minimizing matrix X over $\Omega(D)$,

$$(3) (I_2 \oplus J_p \oplus \cdots \oplus J_p) X (I_2 \oplus J_p \oplus \cdots \oplus J_p) = U.$$

It remains to show the uniqueness of the minimizing matrix over $\Omega(D)$. Suppose that $X = [x_{ij}] \in \Omega(D)$ is a minimizing matrix such that $X \neq U = [u_{ij}]$. By (3), $X[T_0|T_i] = U[T_0|T_i]$ and $X[T_i|T_0] = U[T_i|T_0]$ for i = 1, 2, ..., k. So, there is an i > 1 such that $X[T_i^*|T_i^*] \neq U[T_i^*|T_i^*]$, where $T_i^* = T_0 \cup T_i$. Without loss of generality, we may assume that i = 1.

Case (1).
$$X[T_0|T_1] \neq U[T_0|T_1]$$
 or $X[T_1|T_0] \neq U[T_1|T_0]$.

We may assume that $X[T_0|T_1] \neq U[T_0|T_1]$ by taking transposition if necessary, and also that $x_{13} > u_{13}$ since $\sum_{j=3}^p x_{ij} = \sum_{j=3}^p u_{ij}$ by (3). Let $C = [c_{ij}] := (I_2 \oplus J_p \oplus \cdots \oplus J_p) X(I_3 \oplus J_{p-1} \oplus \cdots \oplus J_p)$. Then, by Lemma 2, C is also a minimizing matrix over $\Omega(D)$, $c_{ij} = u_{ij}$ for all $(i,j) \in T_1^* \times T_1^*$ and

$$C[T_1^* | T_1^*] = \begin{bmatrix} x_{13} & b & \cdots & b \\ O_2 & b' & c & \cdots & c \\ & u & v & \cdots & v \\ & u & v & \cdots & v \\ uJ_{p,2} & \vdots & \vdots & \vdots & \vdots \\ & u & v & \cdots & v \end{bmatrix}$$

where $u = u_{13}$. Since $C[T_1^*|T_1^*](I_2 \oplus J_p) = U[T_1^*|T_1^*]$ and $x_{13} > u_{13}$, we see that $c > u_{13}$ and $b < u_{13}$. Now,

$$0 = \operatorname{per} C(1|3) - \operatorname{per} C(2|3) = (p-1)(c-b)\operatorname{per} C(1,2|3,4) > 0,$$

a contradiction.

Case (2). $X[T_0|T_1] = U[T_0|T_1], X[T_1|T_0] = U[T_1|T_0]$ but $X[T_1|T_1] \neq U[T_1|T_1]$.

In this case, we may assume that $x_{33} > u_{33}$. Let $H = [h_{ij}] := (I_3 \oplus J_{p-1} \oplus \cdots \oplus J_p)X(I_3 \oplus J_{p-1} \oplus \cdots \oplus J_p)$. Then, H is also a minimizing matrix and $h_{ij} = u_{ij}$ for all $(i,j) \notin {T_1}^* \times {T_1}^*$ and

$$H[T_1^*|\ T_1^*] = egin{bmatrix} uJ_{2,p} & & & & \ O_2 & & & & & \ & x_{33} & r & \cdots & r \ & r & t & \cdots & t \ uJ_{p,2} & dots & dots & dots & dots \ & r & t & \cdots & t \ \end{bmatrix}$$

where $u = u_{13}$.

Since $x_{33} > u_{33}$, we see that $r < u_{33}$ and $t > u_{33}$ from (3) again. Thus, as before, we can show that 0 = perH(3|3) - perH(4|3) = (p-1)(t-r)perH(3,4|3,4) > 0, a contradiction.

We recall that
$$D^* = D + \begin{bmatrix} J_2 & O \\ O & O \end{bmatrix}$$
.

From now on, we talk to the minimum permanent and the minimizing matrix over $\Omega(D^*)$.

Before we start the proof of some theorems and lemmas, let

$$A = egin{bmatrix} zJ_{2,2} & a_1J_{2,p} & a_kJ_{2,p} \ \hline a_1J_{2,p} & b_1J_p & \ & b_2J_p & O \ & \ & O & \ddots & \ a_kJ_{2,p} & b_kJ_p \end{bmatrix}$$

for some real numbers a_i , b_i , z and $k \geq 4$.

LEMMA 5. Let $z_i = \frac{a_i}{b_i}$. Then all z_i are the same value for all i = 1, 2, ..., k.

Proof. Let X be a minimizing matrix over $\Omega(D^*)$. By Lemma 2, A^* is also a minimizing matrix over $\Omega(D^*)$. We may assume that $a_1 \geq a_2 \geq \cdots \geq a_k$ and let $z_i = \frac{a_i}{b_i}$ for all $i = 1, 2, \ldots, k$. Then, for the contrary, we assume that $a_1 > a_k$.

$$\operatorname{per} A^*(1|3) \\
= [2z\operatorname{per} A^*(1,2|1,3) + (p-1)a_1\operatorname{per} A^*(1,2|3,4) \\
+ pa_2\operatorname{per} A^*(1,2|3,p+3) + pa_3\operatorname{per} A^*(1,2|3,2p+3) + \cdots \\
+ pa_k\operatorname{per} A^*(1,2|3,p(k-1)+3)]\operatorname{per} B \\
= [2z[(p!)^k a_1b_1^{p-1}b_2^p \cdots b_k^p] + (p-1)a_1[(p!)^k a_1^2b_1^{p-2}b_2^p \cdots b_k^p] + \cdots \\
+ pa_k[(p!)^k a_1a_kb_1^{p-1}b_2^p \cdots b_k^{p-1}]]\operatorname{per} B.$$

Since $perB = \prod_{i=1}^{k} p! b_i^p$,

(4)
$$\frac{\operatorname{per} A^*(1,2|3,4)}{\operatorname{per} B} = \frac{(p!)^k a_1^2 b_1^{p-2} b_2^{P} \cdots b_k^{p}}{\prod_{i=1}^k p! b_i^{p}} = \frac{a_1^2}{b_1^2}$$

and

(5)
$$\frac{\operatorname{per} A^*(1,2|1,3)}{\operatorname{per} B} = \frac{(p!)^k a_1 b_1^{p-1} b_2^P \cdots b_k^p}{\prod_{i=1}^k p! b_i^p} = \frac{a_1}{b_1}.$$

Also, for
$$j = p + 3, 2p + 3, 3p + 3, \dots, p(k - 1) + 3$$
,

(6)
$$\frac{\operatorname{per} A^*(1,2|3,j)}{\operatorname{per} B} = \frac{(p!)^k 2a_1 a_j b_1^{p-1} b_j^{p-1} \prod_{i \neq j} b_i^p}{\prod_{i=1}^k p! b_i^p} = \frac{2a_1 a_j}{b_1 b_j}.$$

By (4), (5) and (6), we obtain that

$$\operatorname{per} A^*(1|3) \\
= \left[2z(\frac{a_1}{b_1}) + (p-1)a_1(\frac{a_1}{b_1})^2 + pa_2(\frac{2a_1a_2}{b_1b_2}) + \dots + pa_k(\frac{2a_1a_k}{b_1b_k})\right] \operatorname{per} B \\
= \left[2zz_1 + (p-1)a_1z_1^2 + 2pa_2z_1z_2 + \dots + 2pa_kz_1z_k\right] \operatorname{per} B.$$

By similar method,

$$per A^*(1|p(k-1)+3)$$
= $[2zz_k + 2pa_1z_1z_k + \dots + 2pa_{k-1}z_{k-1}z_k + (p-1)a_kz_k^2]per B.$

By Lemma 1, we see that

$$0 = \operatorname{per} A^*(1|3) - \operatorname{per} A^*(1|p(k-1)+3)$$

$$= [(z_1 - z_k)[2z + (p-1)a_1z_1 + 2pa_2z_2 + \dots + 2pa_{k-1}z_{k-1} + (p-1)a_kz_k] - (p+1)(a_1 - a_k)z_1z_k]\operatorname{per} B$$

$$= [(z_1 - z_k)[2z + (p-1)a_1z_1 + 2p\sum_{i=2}^{k-1} a_iz_i + (p-1)a_kz_k] - (p+1)z_1z_k(a_1 - a_k)]\operatorname{per} B.$$

Since $z_1 - z_k = \frac{1}{pb_1b_k}(a_1 - a_k)$ and by Lemma 3, we can obtain that

$$0 = \operatorname{per} A^*(1|3) - \operatorname{per} A^*(1|p(k-1)+3)$$

$$= \left[\frac{(a_1 - a_k)}{pb_1b_k} [2z + (p-1)a_1z_1 + 2p\sum_{i=2}^{k-1} a_iz_i + (p-1)a_kz_k] - (p+1)z_1z_k(a_1 - a_k)\right]\operatorname{per} B$$

$$= (a_1 - a_k)\left[\frac{1}{pb_1b_k} [2z + (p-1)a_1z_1 + 2p\sum_{i=2}^{k-1} a_iz_i + (p-1)a_kz_k] - (p+1)z_1z_k\right]\operatorname{per} B$$

$$= (a_{1} - a_{k}) \left[\frac{2z}{pb_{1}b_{k}} + \frac{(p-1)}{pb_{k}} z_{1}^{2} - (p+1)z_{1}z_{k} + \frac{(p-1)}{pb_{1}} z_{k}^{2} \right]$$

$$+ \frac{2}{b_{1}b_{k}} \sum_{i=2}^{k-1} a_{i}z_{i} \operatorname{per} B$$

$$> (a_{1} - a_{k}) \left[\frac{2z}{pb_{1}b_{k}} + (p-1)z_{1}^{2} - (p+1)z_{1}z_{k} + (p-1)z_{k}^{2} \right]$$

$$+ \frac{2}{b_{1}b_{k}} \sum_{i=2}^{k-1} a_{i}z_{i} \operatorname{per} B$$

$$= (a_{1} - a_{k}) \left[\frac{2z}{pb_{1}b_{k}} + (p-1)z_{k}^{2} \left[\left(\frac{z_{1}}{z_{k}} \right)^{2} - \frac{p+1}{p-1} \left(\frac{z_{1}}{z_{k}} \right) + 1 \right]$$

$$+ \frac{2}{b_{1}b_{k}} \sum_{i=2}^{k-1} a_{i}z_{i} \operatorname{per} B$$

$$> 0,$$

which is a contradiction from $a_1 > a_k$. Therefore $a_1 = a_k$ and hence, a_i are the same value for i = 1, 2, ..., k. Therefore, we obtain the result.

For the main theorem, we need the following Lemma:

LEMMA 6. For all i, $\frac{a_i}{b_i} \leq \frac{1}{2}$.

Proof. By Lemma 5, we have all $\frac{a_i}{b_i}$ are the same value. So we may put $\frac{a_i}{b_i} = z$ and assume that $z > \frac{1}{2}$. Now, since A^* is row stochastic matrix, we obtain

$$1 = 2z + \sum_{i=1}^k pa_i.$$

By hypothesis, we have

(7)
$$1 = 2z + \sum_{i=1}^{k} pa_i = 2z + p \sum_{i=1}^{k} a_i$$
$$> 2z + \frac{p}{2} \sum_{i=1}^{k} b_i.$$

Since the A^* is column stochastic matrix, we can change the equation (7)

(8)
$$1 > 2z + \frac{p}{2} \sum_{i=1}^{k} \frac{(1 - 2a_i)}{p}$$
$$= 2z + \frac{1}{2} [\sum_{i=1}^{k} (1 - 2a_i)]$$
$$= 2z + \frac{1}{2} [k - 2 \sum_{i=1}^{k} a_i].$$

Then, from the first and the last line in the equation (8), we have

$$2z < 1 - \frac{1}{2}[k - 2\sum_{i=1}^{k} a_i]$$

 $< 1 - \frac{k}{2} + 1 = \frac{4 - k}{2} < 0,$

a contradiction. Therefore $\frac{a_i}{b_i} \leq \frac{1}{2}$ for all $i = 1, 2, \dots, k$.

THEOREM 7. For positive integers $p \geq 3$ and k, we have $Min(D^*) = Min(D)$.

Proof. Let X be a minimizing matrix over $\Omega(D^*)$. By Lemma 2, A^* is also a minimizing matrix over $\Omega(D^*)$. Then,

$$\begin{aligned} &\operatorname{per} A^*(1|1) \\ &= & [z\operatorname{per} A^*(1,2|1,2) + pa_1\operatorname{per} A^*(1,2|3,4) + pa_2\operatorname{per} A^*(1,2|3,p+3) \\ &+ pa_3\operatorname{per} A^*(1,2|3,2p+3) + \cdots \\ &+ pa_k\operatorname{per} A^*(1,2|3,p(k-1)+3)]\operatorname{per} B \\ &= & [z[(p!)^kb_1^pb_2^p\cdots b_k^p] + pa_1[(p!)^kb_1^{p-1}b_2^p\cdots b_k^p] + pa_2[(p!)^kb_1^pb_2^{p-1}\cdots b_k^p] \\ &+ pa_3[(p!)^kb_1^pb_2^pb_3^{p-1}\cdots b_k^p] + \cdots + pa_k[(p!)^kb_1^pb_2^p\cdots b_k^{p-1}]]\operatorname{per} B \\ &= & [z+pa_1z_1+\cdots+pa_kz_k]\operatorname{per} B. \end{aligned}$$

By the proof of Lemma 5, we get

$$\operatorname{per} A^*(1|3) = [2zz_1 + (p-1)a_1z_1^2 + 2pa_2z_1z_2 + \dots + 2pa_kz_1z_k]\operatorname{per} B.$$

If $A^*[1,2|1,2] \neq O$, then Lemma 1 show that $\operatorname{per} A^*(1|1) = \operatorname{per} A^*(1|3) = \operatorname{per} A^*$. But then

$$0 = \operatorname{per} A^*(1|3) - \operatorname{per} A^*(1|1)$$

(9)
$$= [z(2z_1 - 1) + a_1z_1((p - 1)z_1 - p) + (2z_1 - 1)\sum_{i=2}^k pa_iz_i]\operatorname{per}B.$$

However, Lemma 6 yield that the right hand side of (9) is negative, which is a contradiction. Hence, we have $A^*[1,2|1,2] = O$, that is $Min(D^*) = Min(D)$.

ACKNOWLEDGEMENT. The author is very much grateful for the anonymous referee for valuable comments and his/her very careful reading of the paper.

References

- [1] R. A. Brualdi, An interesting face of the polytope of doubly stochastic matrices, Linear and Multilinear Algebra 17 (1985), no. 1, 5-18.
- [2] R. A. Brualidi and P. M. Gibson, Convex polyhedra of doubly stochastic matrices I: Application of the permanent function, J. Combinatorial Theory Ser. A. 22 (1977), no. 2, 194-230.
- [3] Seok-Su Do and S. G. Hwang, Some rationally looking faces of Ω_n having irrational minimum permanents, Linear and Multilinear Algebra 30 (1991), no. 1-2, 145–154.
- [4] T. H. Foregger, On the minimum value of the permanent of a nearly decomposable doubly stochastic matrix, Linear Algebra Appl. 32 (1980), 75–85.
- [5] S. Z. Song, Minimum permanents on certain faces of matrices containing an identity submatrix, Linear Algebra Appl. 108 (1988), 263-280.

DEPARTMENT OF MATHEMATICS EDUCATION, KYUNGPOOK NATIONAL UNIVERSITY, TAEGU 702-701, KOREA

E-mail: eylee89@hanmail.net