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RELATIVE VOLUME COMPARISON WITH
INTEGRAL RADIAL CURVATURE BOUNDS

JONG-GUG YUN

ABSTRACT. In this paper, we generalize the Bishop-Gromov vol-
ume comparison theorem by considering an integral bound for the
part of the radial Ricci curvature which lies below a given smooth
function. We also establish a compactness theorem from this result.

1. Introduction

In 1997, P. Petersen and G. Wei generalized the classical volume
comparison theorem to a situation where one only has an integral bound
for the part of Ricci curvature which lies below a given number ([5]).

Like many other results on the volume comparison, they compared
the volumes of concentric metric balls with those on the complete simply
connected space forms of constant sectional curvature.

In this paper, we generalize their result to a situation where our
model spaces do not have metrics of constant sectional curvature but
their curvature may change sign.

For the construction of our model space, we first choose a constant
0 <l < 00 and a smooth function K : [0,I) — R which are associated
with the model space M* and z* € M™* as follows.

A complete Riemannian n- manifold M* with the base point * € M*
is said to have the radial sectional curvature K : [0,1) — R at z* if the
following is satisfied:

e The tangential cut locus Cp+ C M. at x* is the sphere S"~1(1)
with radius [l if ] < oo and Cp» = ¢ if | = o0.
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e Along every geodesic v* : [0,l) — M* emanating from z* € M*,
the sectional curvature satisfies

K« (v(t), X) = K(t),Vt € (0,1], VX € Tpuy M*, X Ly*(t).
e If | < oo, then v*(I) is the first conjugate point to z* along ~v*.

Several properties of the model space M* can be found in [6]. Now
suppose that we are given a complete Riemannian manifold M and z €
M. Let ¢(8) be the cut distance in the direction § € S;M = {0 €
T.M | |8 = 1}. We define w(t,6) for 0 < t < ¢(8), 6 € S;M C T, M by

dvol = w(t, §)dtdf, -1,

where df,,_1 is the standard volume element on the unit sphere S"“l(:
Sz M). We define w(t,#) to be zero for t > ¢(8).
We then consider

c(6)
k(p, K) = /S - /0 max{0, (n — 1)K (£) — Ric_Pw(t, 0)dtdon_1,

where the function Ric_ is the lowest eigenvalue for the Ricci tensor of
M.

Our main result is the following generalization of a Theorem in [5].

THEOREM 1.1. Let (M*,z*) be a complete Riemannian n-manifold
with the radial sectional curvature K : [0,l) — R at the base point
z* € M* and M be a complete Riemannian n-manifold with x € M.

Then given p > § and R < [, there exists a constant C(n,p, K, R)
which is nondecreasing in R such that when r < R we have

1 1
volB(z, R) \ % volB(z,r) | 2* N
volB(z, R) \?*» ([ volB(z,r) \* _
<V01B($*» R)) (VolB(x*,r) < C(n,p, K, R)k(p, K),

where B(z,r) denotes the geodesic ball of radius r centered at x in M.

In case of the space form as a model space, the proof of the volume
comparison theorem tends to depend heavily on the property of the mean
curvature function on the comparison space with constant curvature for
some analytic reasons.

However, the mean curvature function hg in our case may be more
complicated and more careful observation is needed to overcome the
complexity of the shape of the mean curvature function in our case.

By using the same arguments as in the Theorem 1.7 of [5], we can also
obtain a generalized precompactness theorem for manifolds with almost
maximal volume.
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THEOREM 1.2. Under the same conditions as the above theorem and
for given ¢ > 0, one can find € = e(n,p, K,7%) > 0 and § = §(n, K,7?) >
0 such that the class of complete Riemannian n-manifolds with

volB(z,r) > (1 — §)volB(z*,r) for all x € M,
and
[ mer<c kp R <
B(z,r)

is precompact in the C®-topology (o < 2 — 7;})

Since Theorem 1.2 follows immediately just by combining the above
Theorem 1.1 with the arguments for the proof of Theorem 1.7 in [5], we
omit the proof.

2. Proof of Theorem 1.1

Our proof follows basically from the arguments of section 2 and sec-
tion 4 in [4].

First, let us introduce some notation.

The metric of the model space M* with the radial sectional curvature
K :[0,1) — R at a base point z* is expressed by using the geodesic polar

coordinates around z* as follows.
(ds*)? = dt* + widb>

n—11

where d62_, is the canonical metric on the standard unit sphere S"™*
and wgk : [0,1) — R satisfies the Jacobi equation.

w/}/{ + Kwg =0,
wi (0) =0, wi(0) =1.

If we let hxg = %, then we have the following equation ([1]).
L
=—-(n—1)K.
K+ 77 (n—1)

For a given complete Riemannian n-manifold (M, g), w(t, 8) is defined
as in the previous section, that is, dvol = w(t, 8)dtd6,_1 in the geodesic
polar coordinates around z € M.

In the similar way as in the model space, we let h(t,0) = %, where
wl(t, 0) is the derivation of w(t,§) with respect to the first variable ¢ and
we also have the inequality

h2

h+

< —Ric_.
7= ic
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In fact, we know that h is the mean curvature of the distance sphere
around .
In order to generalize the mean curvature estimates in [4|, we define

¥(t,6) = (h(t,0) — hx(8))+,
p(t,6) = ((n - DK(t) - Ric_(£,6))s,
where uy = max(0, u).

From the above equality for hx and inequality for h, we know that
¥ and p satisfy
P2 2hgy
2.1 "+ ——+ —— <p.
2.1) V=gt ——T<p
We are now in a position to state our main lemma which generalizes
Theorem 2.1 in [4] to our situation.

LEMMA 2.1. With notations as above, we have for alln > 2, p > %
an estimate of the form

T T
[ w0t < Cuctnp,r) [ 000t
0 0
where Ck (n,p,r) is an explicit constant depending only on the variables
indicated.

REMARK. In the case | < oo, we always suppose r < [ implicitly in
the above lemma.

Proof. We shall follow the ideas of the proof of Theorem 2.1 in [4].

As in [4], we use the inequality (2.1). If we multiply this inequality by
1?P~2 and integrate from 0 to r, then we obtain the following inequality.
(For details, see the proof of Theorem 2.1 in [4])

1 1 L
_ P
(n—l 2p—1>/0¢ w
T
S/p¢2p‘2w
0

. 2 o 1 " 2p—1
0w () [ ¥

If mingeg,{hx(t)} > O, then by using the Holder inequality, one
immediately gets a bound which we want:

/T¢2pw<( LN )_p/rppw
0 “\n-1 2p—1 0 )
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From now on, assume that B2 (K) := minsepoy{hx(t)} <0 and let
*t:={t € (0,r): hg(t) >0},

“:={te (0,7): hg(t) <0}.
Note that (0,7) = H+ UH“
We shall now estimate the value (¥2P~1w)(t) for t € (0,r) = HY* JH".
We first consider the case t € H.
Put a = sup{s < t : hg(s) < 0}. (If {s < t: hg(s) < 0} is empty,
then we put @ = 0.) Then it is easy to check that hx(s) > 0 on (a,t)
and that hx(a) = 0.

To estimate (¥*?~'w)(a), we introduce two auxiliary functions hy =

(hx)+ and ¢ := (b — hi)y.
It is easy to check that we still have

P2 2hxy
L T T

%(0) = 0.
Multiplying this inequality by $?~2y and integrating from 0 to a,
we obtain

1 T2p—1 1 1 ¢ 9
-1V “’)(“)+<E—_1_2p—1)/0 Yrw

2 1 o . - o .
R
n-— D — 0 0

_ Note that ¥(a) = ¥(a) since hg(a) = 0 and that ¢ < ¢ since hg <
hk.
So from the above inequality, we have

2p—1 a ¢ ~2p—2w
(" lw)(a) < /0 ol

< (/Oa p”w)%(/oa ¥?Pw)' 5

Now multiplying the inequality (2.1) by 1*P~2w and integrating from
a to t, we obtain

p—1 p—1 1 1 !
> 0 - S0P + (- ) [ v

_ < P .
+(n—1 2p—1)/a¢ ’”‘“’—/a’"/’ v

2p—1
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Thus we have

2p1_1(w2p*1w)( ) < 5 @F T w)(e) + / Py
<2/ pPw)r /wzf’w )5

We next consider the case where t € H™.
Similarly, we let ¢ := sup{s < ¢t : hx(s) > 0}. Note that hx(c) = 0.
Then by the same arguments as before, we obtain

“)(e) < (/OT ppwﬁ(/or ¥P0)' 5,

Now note that if in the inequality (2.1) we drop the %2 term and
multiply through by ?~2, then we have

_ 2 —1, min -
Y+ =y PTIRR(r) < pyP

We multiply this by (2p — 1) and the integrating factor

2(2p-1)
t — hmm t
#(t) = exp(hpn(r) S2—t)
and write this as
(0?1 < (2p — 1)y 2
< (2p— Dpy® 2.
If we multiply this inequality by w and integrate from c to ¢, we get
i t
@) @rroli- [ lo<@-1) [ et
C c
which can be reduced to
t t
o)l < @ - ([ hev ok [ pu o).
C C
Recall that

/‘”Zp“(n—l 2p1—1>_p/or”p“"

This gives the following inequality.

/ Chap? < ( PR / R
(eki-g) o
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Consequently, we obtain from (2.3) that
(¢ w)(®)
< (P w)(e)

t 14
+ = h o [ o)

< @p-1)([ P [ v

1
1 2 L 2
rer-0) () ([ paBf v
" 1 ~1
+ep-1([ ([ vy
We definitely get an estimate of (¥~ w)(t) for t € (0,7) as follows.

WP L)1) < Crlp,nyr, K){( / " Pu)F( / Ty

+(/0Tp”w%/1/z2pw 2@.

The proof of Theorem 2.1 in [4] can now be applied. (For details, See
pp. 280-281 in [4])

So, with the inequality (2.4), we return to (2.2) and conclude the
desired result.

(2.3)

/ '¢2PWSC(]),TL,T,K)/ ppw,
0 0
O

Now we can prove Theorem 1.1 by the similar arguments in the sec-
tion 4 of [4] as follows.

Note first that as in the lemma 2.1 of [5], we see that the volume ratio
satisfies

V() < CouKor)( [ wval) (volBat, ) Bulr) 7,
B(z,r)

where

volB(z, )

y(r) = volB(z*,r)’

C(n,K,r)= ma.x{u
te0,r] waK s)ds

)
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and

for u < w.

Clw,u) = .WK(“)WK(U))
miny<s<w{wk (s)}
Using lemma 2.1, we see that on [0, R}, the volume ratio y(r) satisfies

L

Y < M)yt %, M = C(n,p, K, R)( / Pavol).
B(z,R)

Integrating this inequality over [r, R], we obtain the desired result.
(For details, see the section 4 in [4].)
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