ON MCSHANE-STIELTJES INTEGRALS OF INTERVAL-VALUED FUNCTIONS AND FUZZY-NUMBER-VALUED FUNCTIONS

CHUN-KEE PARK

ABSTRACT. In this paper we introduce the concept of the McShane-Stieltjes integrals of interval-valued functions and fuzzy-number-valued functions and investigate some of their properties.

1. Introduction

The Henstock integral of real-valued functions is the special case of the McShane integral of real-valued functions [2]. Congxin Wu and Zengtai Gong [8] introduced the concept of the Henstock integrals of interval-valued functions and fuzzy-number-valued functions and obtained some of their properties. J. H. Yoon [9] introduced the concept of the McShane-Stieltjes integral of real-valued functions which is a generalization of the McShane integral and obtained its properties.

In this paper we introduce the concept of the McShane-Stieltjes integrals of interval-valued functions and fuzzy-number-valued functions which are generalizations of the Henstock integrals of interval-valued functions and fuzzy-number-valued functions [8] and investigate some of their properties.

2. Preliminaries

DEFINITION 2.1 [3]. A McShane partition of [a, b] is a finite collection $\mathcal{P} = \{([c_i, d_i], t_i) : 1 \leq i \leq n\}$ such that $\{[c_i, d_i] : 1 \leq i \leq n\}$ is a non-overlapping family of subintervals of [a, b] covering [a, b] and $t_i \in$

Received January 15, 2003.

²⁰⁰⁰ Mathematics Subject Classification: 28B05, 26A39, 46G10, 03E72.

Key words and phrases: fuzzy numbers, McShane-Stieltjes integral of intervalvalued functions, McShane-Stieltjes integral of fuzzy-number-valued functions.

[a,b] for each $i \leq n$. A gauge on [a,b] is a function $\delta:[a,b] \to (0,\infty)$. A McShane partition $\mathcal{P} = \{([c_i,d_i],t_i): 1\leq i\leq n\}$ is subordinate to a gauge δ if $[c_i,d_i]\subset (t_i-\delta(t_i),t_i+\delta(t_i))$ for every $i\leq n$. If $f:[a,b]\to \mathbf{R}$ and if $\mathcal{P} = \{([c_i,d_i],t_i): 1\leq i\leq n\}$ is a McShane partition of [a,b], we will denote $f(\mathcal{P})$ for $\sum_{i=1}^n f(t_i)(d_i-c_i)$. A function $f:[a,b]\to \mathbf{R}$ is McShane integrable on [a,b], with McShane integral $L\in \mathbf{R}$, if for each $\varepsilon>0$ there exists a gauge $\delta:[a,b]\to (0,\infty)$ such that $|f(\mathcal{P})-L|<\varepsilon$ whenever $\mathcal{P}=\{([c_i,d_i],t_i): 1\leq i\leq n\}$ is a McShane partition of [a,b] subordinate to δ . We write $(M)\int_a^b f(x)dx=L$ and $f\in M[a,b]$.

Let $\alpha : [a, b] \to \mathbf{R}$ be an increasing function. If $f : [a, b] \to \mathbf{R}$ and if $\mathcal{P} = \{([c_i, d_i], t_i) : 1 \le i \le n\}$ is a McShane partition of [a, b], we will denote $f_{\alpha}(\mathcal{P})$ for $\sum_{i=1}^{n} f(t_i) [\alpha(d_i) - \alpha(c_i)]$.

DEFINITION 2.2 [9]. Let $\alpha:[a,b]\to \mathbf{R}$ be an increasing function. A function $f:[a,b]\to \mathbf{R}$ is McShane-Stieltjes integrable with respect to α on [a,b], with McShane-Stieltjes integral $L\in \mathbf{R}$, if for each $\varepsilon>0$ there exists a gauge $\delta:[a,b]\to(0,\infty)$ such that $|f_{\alpha}(\mathcal{P})-L|<\varepsilon$ whenever $\mathcal{P}=\{([c_i,d_i],t_i):1\leq i\leq n\}$ is a McShane partition of [a,b] subordinate to δ . We write $(MS)\int_a^b fd\alpha=L$ and $f\in MS_{\alpha}[a,b]$. The function f is McShane-Stieltjes integrable with respect to α on a set $E\subset [a,b]$ if $f\chi_E$ is McShane-Stieltjes integrable with respect to α on [a,b].

Let $\alpha:[a,b]\to \mathbf{R}$ be an increasing function. A function $f:[a,b]\to \mathbf{R}$ is McShane-Stieltjes integrable with respect to α on [a,b] if and only if for each $\epsilon>0$ there exists a gauge $\delta:[a,b]\to(0,\infty)$ such that $|f_{\alpha}(\mathcal{P}_1)-f_{\alpha}(\mathcal{P}_2)|<\epsilon$ whenever \mathcal{P}_1 and \mathcal{P}_2 are McShane partitions of [a,b] subordinate to δ .

THEOREM 2.3 [7]. Let $\alpha : [a,b] \to \mathbf{R}$ be a strictly increasing function such that $\alpha \in C^1([a,b])$ and let $f : [a,b] \to \mathbf{R}$ be a bounded function. Then f is McShane-Stieltjes integrable with respect to α on [a,b] if and only if $\alpha'f$ is McShane integrable on [a,b].

3. McShane-Stieltjes integral of interval-valued functions

In this section, we introduce the concept of the McShane-Stieltjes integral of interval-valued functions and investigate some of their properties.

DEFINITION 3.1 [8]. Let $I_{\mathbf{R}} = \{I = [I^-, I^+] : I \text{ is the closed bounded interval on the real line } \mathbf{R} \}$. For $A, B, C \in I_{\mathbf{R}}$, we define $A \leq B$ if $A^- \leq B^-$ and $A^+ \leq B^+$, A+B=C if $C^-=A^-+B^-$ and $C^+=A^++B^+$, and $A \cdot B = \{a \cdot b : a \in A, b \in B\}$, where $(A \cdot B)^- = \min\{A^- \cdot B^-, A^- \cdot B^+, A^+ \cdot B^-, A^+ \cdot B^+\}$ and $(A \cdot B)^+ = \max\{A^- \cdot B^-, A^- \cdot B^+, A^+ \cdot B^-, A^+ \cdot B^+\}$. Define $d(A, B) = \max\{|A^- - B^-|, |A^+ - B^+|\}$ as the distance between A and B.

DEFINITION 3.2. An interval-valued function $F:[a,b]\to I_{\mathbf{R}}$ is Mc-Shane integrable on [a,b], with McShane integral $I_0\in I_{\mathbf{R}}$, if for each $\varepsilon>0$ there exists a gauge $\delta:[a,b]\to(0,\infty)$ such that $d(\sum_{i=1}^n F(t_i)(d_i-c_i),I_0)<\epsilon$ whenever $\mathcal{P}=\{([c_i,d_i],t_i):1\leq i\leq n\}$ is a McShane partition of [a,b] subordinate to δ . We write $(IM)\int_a^b F(x)dx=I_0$ and $F\in IM[a,b]$. The interval-valued function F is McShane integrable on a set $E\subset [a,b]$ if $F\chi_E$ is McShane integrable on [a,b].

DEFINITION 3.3. Let $\alpha:[a,b]\to \mathbf{R}$ be an increasing function. An interval-valued function $F:[a,b]\to I_{\mathbf{R}}$ is McShane-Stieltjes integrable with respect to α on [a,b], with McShane-Stieltjes integral $I_0\in I_{\mathbf{R}}$, if for each $\varepsilon>0$ there exists a gauge $\delta:[a,b]\to(0,\infty)$ such that $d(\sum_{i=1}^n F(t_i)[\alpha(d_i)-\alpha(c_i)],I_0)<\varepsilon$ whenever $\mathcal{P}=\{([c_i,d_i],t_i):1\leq i\leq n\}$ is a McShane partition of [a,b] subordinate to δ . We write $(IMS)\int_a^b Fd\alpha=I_0$ and $F\in IMS_\alpha[a,b]$. The interval-valued function F is McShane-Stieltjes integrable with respect to α on a set $E\subset [a,b]$ if $F\chi_E$ is McShane-Stieltjes integrable with respect to α on [a,b].

THEOREM 3.4. Let $\alpha:[a,b]\to \mathbf{R}$ be an increasing function. Then an interval-valued function $F\in IMS_{\alpha}[a,b]$ if and only if $F^-,F^+\in MS_{\alpha}[a,b]$ and

$$(IMS)\int_a^b F d\alpha = \left\lceil (MS)\int_a^b F^- d\alpha, (MS)\int_a^b F^+ d\alpha \right\rceil.$$

Proof. Let $F \in IMS_{\alpha}[a,b]$. Then there exists an interval $I_0 = [I_0^-, I_0^+]$ with the property that for each $\varepsilon > 0$ there exists a gauge $\delta : [a,b] \to (0,\infty)$ such that $d(\sum_{i=1}^n F(t_i)[\alpha(d_i) - \alpha(c_i)], I_0) < \varepsilon$ whenever $\mathcal{P} = \{([c_i,d_i],t_i): 1 \leq i \leq n\}$ is a McShane partition of [a,b] subordinate to δ . Since $\alpha(d_i) - \alpha(c_i) \geq 0$ for $1 \leq i \leq n$, we have

$$d\left(\sum_{i=1}^{n} F(t_i)[\alpha(d_i) - \alpha(c_i)], I_0\right)$$

$$= \max \left\{ \left| \left(\sum_{i=1}^{n} F(t_i) [\alpha(d_i) - \alpha(c_i)] \right)^{-} - I_0^{-} \right|, \\ \left| \left(\sum_{i=1}^{n} F(t_i) [\alpha(d_i) - \alpha(c_i)] \right)^{+} - I_0^{+} \right| \right\} \\ = \max \left\{ \left| \sum_{i=1}^{n} F^{-}(t_i) [\alpha(d_i) - \alpha(c_i)] - I_0^{-} \right|, \\ \left| \sum_{i=1}^{n} F^{+}(t_i) [\alpha(d_i) - \alpha(c_i)] - I_0^{+} \right| \right\}.$$

Hence $\left|\sum_{i=1}^n F^-(t_i)[\alpha(d_i) - \alpha(c_i)] - I_0^-\right| < \epsilon$ and $\left|\sum_{i=1}^n F^+(t_i)[\alpha(d_i) - \alpha(c_i)] - I_0^+\right| < \epsilon$ whenever $\mathcal{P} = \{([c_i, d_i], t_i) : 1 \le i \le n\}$ is a McShane partition of [a, b] subordinate to δ . Thus $F^-, F^+ \in MS_{\alpha}[a, b]$ and $(IMS) \int_a^b F d\alpha = I_0 = [I_0^-, I_0^+] = [(MS) \int_a^b F^- d\alpha, (MS) \int_a^b F^+ d\alpha]$.

Conversely, let $F^-, F^+ \in MS_{\alpha}[a,b]$. Then there exists $M_1 \in \mathbf{R}$ with the property that given $\varepsilon > 0$ there exists a gauge $\delta_1 : [a,b] \to (0,\infty)$ such that $|\sum_{i=1}^n F^-(t_i)[\alpha(d_i) - \alpha(c_i)] - M_1| < \epsilon$ whenever $\mathcal{P} = \{([c_i,d_i],t_i):1\leq i\leq n\}$ is a McShane partition of [a,b] subordinate to δ_1 . Similarly, there exists $M_2 \in \mathbf{R}$ with the property that given $\varepsilon > 0$ there exists a gauge $\delta_2 : [a,b] \to (0,\infty)$ such that $|\sum_{i=1}^n F^+(t_i)[\alpha(d_i) - \alpha(c_i)] - M_2| < \epsilon$ whenever $\mathcal{P} = \{([c_i,d_i],t_i):1\leq i\leq n\}$ is a McShane partition of [a,b] subordinate to δ_2 . Since $F^-(x)\leq F^+(x)$ for all $x\in [a,b]$, $M_1\leq M_2$. Let $\delta(x)=\min\{\delta_1(x),\delta_2(x)\}$ for $x\in [a,b]$ and $I_0=[M_1,M_2]$. Then we have

$$d\left(\sum_{i=1}^{n} F(t_i)[\alpha(d_i) - \alpha(c_i)], I_0\right)$$

$$= \max \left\{ \left| \left(\sum_{i=1}^{n} F(t_i)[\alpha(d_i) - \alpha(c_i)]\right)^{-} - M_1 \right|, \right.$$

$$\left| \left(\sum_{i=1}^{n} F(t_i)[\alpha(d_i) - \alpha(c_i)]\right)^{+} - M_2 \right| \right\}$$

$$= \max \left\{ \left| \sum_{i=1}^{n} F^{-}(t_i)[\alpha(d_i) - \alpha(c_i)] - M_1 \right|, \right.$$

$$\left| \sum_{i=1}^{n} F^{+}(t_i) [\alpha(d_i) - \alpha(c_i)] - M_2 \right|$$

$$< \epsilon$$

whenever $\mathcal{P} = \{([c_i, d_i], t_i) : 1 \leq i \leq n\}$ is a McShane partition of [a, b] subordinate to δ . Hence $F \in IMS_{\alpha}[a, b]$.

THEOREM 3.5. Let $\alpha:[a,b]\to \mathbf{R}$ be an increasing function. If $F,G\in IMS_{\alpha}[a,b]$ and $p,q\in \mathbf{R}$, then $pF+qG\in IMS_{\alpha}[a,b]$ and $(IMS)\int_a^b (pF+qG)d\alpha=p(IMS)\int_a^b Fd\alpha+q(IMS)\int_a^b Gd\alpha$.

Proof. If $F, G \in IMS_{\alpha}[a, b]$, then $F^-, F^+, G^-, G^+ \in MS_{\alpha}[a, b]$ by Theorem 3.4. Hence $pF^- + qG^-, pF^- + qG^+, pF^+ + qG^-, pF^+ + qG^+ \in MS_{\alpha}[a, b]$.

(i) If p > 0 and q > 0, then

$$(MS) \int_{a}^{b} (pF + qG)^{-} d\alpha$$

$$= (MS) \int_{a}^{b} (pF^{-} + qG^{-}) d\alpha$$

$$= p(MS) \int_{a}^{b} F^{-} d\alpha + q(MS) \int_{a}^{b} G^{-} d\alpha$$

$$= p \left((IMS) \int_{a}^{b} F d\alpha \right)^{-} + q \left((IMS) \int_{a}^{b} G d\alpha \right)^{-}$$

$$= \left(p(IMS) \int_{a}^{b} F d\alpha + q(IMS) \int_{a}^{b} G d\alpha \right)^{-}.$$

(ii) If p < 0 and q < 0, then

$$(MS) \int_{a}^{b} (pF + qG)^{-} d\alpha$$

$$= (MS) \int_{a}^{b} (pF^{+} + qG^{+}) d\alpha$$

$$= p(MS) \int_{a}^{b} F^{+} d\alpha + q(MS) \int_{a}^{b} G^{+} d\alpha$$

$$= p \left((IMS) \int_{a}^{b} F d\alpha \right)^{+} + q \left((IMS) \int_{a}^{b} G d\alpha \right)^{+}$$

$$=\left(p(IMS)\int_a^b Fd\alpha + q(IMS)\int_a^b Gd\alpha\right)^{-}.$$

(iii) If p > 0 and q < 0 (or p < 0 and q > 0), then

$$(MS) \int_{a}^{b} (pF + qG)^{-} d\alpha$$

$$= (MS) \int_{a}^{b} (pF^{-} + qG^{+}) d\alpha$$

$$= p(MS) \int_{a}^{b} F^{-} d\alpha + q(MS) \int_{a}^{b} G^{+} d\alpha$$

$$= p \left((IMS) \int_{a}^{b} F d\alpha \right)^{-} + q \left((IMS) \int_{a}^{b} G d\alpha \right)^{+}$$

$$= \left(p(IMS) \int_{a}^{b} F d\alpha + q(IMS) \int_{a}^{b} G d\alpha \right)^{-}.$$

Similarly, for four cases above we have

$$(MS)\int_{a}^{b} (pF + qG)^{+} d\alpha = \left(p(IMS)\int_{a}^{b} F d\alpha + q(IMS)\int_{a}^{b} G d\alpha\right)^{+}.$$

Hence by Theorem 3.4, $pF + qG \in IMS_{\alpha}[a, b]$ and $(IMS) \int_{a}^{b} (pF + qG) d\alpha = p(IMS) \int_{a}^{b} F d\alpha + q(IMS) \int_{a}^{b} G d\alpha$.

THEOREM 3.6. Let $\alpha:[a,b]\to \mathbf{R}$ be an increasing function and let $c\in(a,b)$. If $F\in IMS_{\alpha}[a,c]$ and $F\in IMS_{\alpha}[c,b]$, then $F\in IMS_{\alpha}[a,b]$ and $(IMS)\int_{a}^{b}Fd\alpha+(IMS)\int_{a}^{b}Fd\alpha=(IMS)\int_{a}^{b}Fd\alpha$.

Proof. If $F \in IMS_{\alpha}[a,c]$ and $F \in IMS_{\alpha}[c,b]$, then by Theorem 3.4 $F^-, F^+ \in MS_{\alpha}[a,c]$ and $F^-, F^+ \in MS_{\alpha}[c,b]$. Hence $F^-, F^+ \in MS_{\alpha}[a,b]$ and

$$(MS) \int_{a}^{b} F^{-}d\alpha = (MS) \int_{a}^{c} F^{-}d\alpha + (MS) \int_{c}^{b} F^{-}d\alpha$$
$$= \left((IMS) \int_{a}^{c} Fd\alpha + (IMS) \int_{c}^{b} Fd\alpha \right)^{-}.$$

Similarly, $(MS) \int_a^b F^+ d\alpha = \left((IMS) \int_a^c F d\alpha + (IMS) \int_c^b F d\alpha \right)^+$. Hence by Theorem 3.4 $F \in IMS_{\alpha}[a,b]$ and

$$(IMS) \int_{a}^{c} F d\alpha + (IMS) \int_{c}^{b} F d\alpha$$
$$= (IMS) \int_{a}^{b} F d\alpha.$$

THEOREM 3.7. Let $\alpha:[a,b]\to \mathbf{R}$ be an increasing function such that $\alpha\in C^1([a,b])$. If F=G nearly everywhere on [a,b] and $F,G\in IMS_{\alpha}[a,b]$, then $(IMS)\int_a^b Fd\alpha=(IMS)\int_a^b Gd\alpha$.

Proof. Let F=G nearly everywhere on [a,b] and $F,G\in IMS_{\alpha}[a,b]$. Then $F^-,F^+,G^-,G^+\in MS_{\alpha}[a,b]$ and $F^-=G^-,F^+=G^+$ nearly everywhere on [a,b]. By Theorem 2.2 [9], $(MS)\int_a^b F^-d\alpha=(MS)\int_a^b G^-d\alpha$ and $(MS)\int_a^b F^+d\alpha=(MS)\int_a^b G^+d\alpha$. Hence

$$(IMS)\int_{a}^{b} Fd\alpha = (IMS)\int_{a}^{b} Gd\alpha$$

by Theorem 3.4.

THEOREM 3.8. Let $\alpha:[a,b]\to \mathbf{R}$ be an increasing function such that $\alpha\in C^1([a,b])$. If $F\leq G$ nearly everywhere on [a,b] and $F,G\in IMS_{\alpha}[a,b]$, then $(IMS)\int_a^b Fd\alpha\leq (IMS)\int_a^b Gd\alpha$.

Proof. Let $F \leq G$ nearly everywhere on [a,b] and $F,G \in IMS_{\alpha}[a,b]$. Then $F^-,F^+,G^-,G^+\in MS_{\alpha}[a,b]$ and $F^-\leq G^-,F^+\leq G^+$ nearly everywhere on [a,b]. By Theorem 2.7 [9], $(MS)\int_a^b F^-d\alpha \leq (MS)\int_a^b G^-d\alpha$ and $(MS)\int_a^b F^+d\alpha \leq (MS)\int_a^b G^+d\alpha$. Hence

$$(IMS)\int_{a}^{b} Fd\alpha \leq (IMS)\int_{a}^{b} Gd\alpha$$

by Theorem 3.4.

DEFINITION 3.9. An interval-valued function $F:[a,b] \to I_{\mathbf{R}}$ is bounded if there exist $I_0, I_1 \in I_{\mathbf{R}}$ such that $I_0 \leq F(x) \leq I_1$ for all $x \in [a,b]$.

Note that an interval-valued function $F:[a,b] \to I_{\mathbf{R}}$ is bounded if and only if F^- , $F^+:[a,b] \to \mathbf{R}$ are bounded.

THEOREM 3.10. Let $\alpha:[a,b]\to \mathbf{R}$ be a strictly increasing function such that $\alpha\in C^1([a,b])$ and let $F:[a,b]\to I_{\mathbf{R}}$ be a bounded intervalvalued function. Then $F\in IMS_{\alpha}[a,b]$ if and only if $\alpha'F\in IM[a,b]$.

Proof. From Theorem 3.4 we have $F \in IMS_{\alpha}[a,b]$ if and only if $F^-, F^+ \in MS_{\alpha}[a,b]$. Since $F : [a,b] \to I_{\mathbf{R}}$ is bounded if and only if $F^-, F^+ : [a,b] \to \mathbf{R}$ are bounded, from Theorem 2.3 we have $F^-, F^+ \in MS_{\alpha}[a,b]$ if and only if $\alpha'F^-, \alpha'F^+ \in M[a,b]$. Since α is strictly increasing on [a,b], $\alpha' > 0$ on [a,b]. Hence $\alpha'F^- = (\alpha'F)^-$ and $\alpha'F^+ = (\alpha'F)^+$ on [a,b]. From Theorem 2.1 [8] we have $\alpha'F \in IM[a,b]$ if and only if $(\alpha'F)^-, (\alpha'F)^+ \in M[a,b]$. Thus $F \in IMS_{\alpha}[a,b]$ if and only if $\alpha'F \in IM[a,b]$.

4. McShane-Stieltjes integral of fuzzy-number-valued functions

In this section, we introduce the concept of the McShane-Stieltjes integral of fuzzy-number-valued functions and investigate some of their properties.

DEFINITION 4.1 [6]. Let $\widetilde{A} \in F(\mathbf{R})$ be a fuzzy subset on \mathbf{R} . If $A_{\lambda} = [A_{\lambda}^{-}, A_{\lambda}^{+}]$ for any $\lambda \in [0, 1]$ and $A_{1} \neq \phi$, where $A_{\lambda} = \{x \in \mathbf{R} : \widetilde{A}(x) \geq \lambda\}$, then \widetilde{A} is called a fuzzy number. If \widetilde{A} is convex, normal, upper semicontinuous and has the compact support, then \widetilde{A} is called a compact fuzzy number. \widetilde{R} denotes the set of all fuzzy numbers and \widetilde{R}^{C} denotes the set of all compact fuzzy numbers.

DEFINITION 4.2 [6]. For $\widetilde{A}, \widetilde{B}, \widetilde{C} \in \widetilde{R}$, we define $\widetilde{A} \leq \widetilde{B}$ if $A_{\lambda} \leq B_{\lambda}$ for any $\lambda \in (0,1]$, $\widetilde{A} + \widetilde{B} = \widetilde{C}$ if $A_{\lambda} + B_{\lambda} = C_{\lambda}$ for any $\lambda \in (0,1]$, $\widetilde{A} \cdot \widetilde{B} = \widetilde{C}$ if $A_{\lambda} \cdot B_{\lambda} = C_{\lambda}$ for any $\lambda \in (0,1]$. For $\widetilde{A}, \widetilde{B} \in \widetilde{R}^{C}$, $D(\widetilde{A}, \widetilde{B}) = \sup_{\lambda \in [0,1]} d(A_{\lambda}, B_{\lambda})$ is called the distance of \widetilde{A} and \widetilde{B} .

LEMMA 4.3 [5]. If a function $H:[0,1] \to I_{\mathbf{R}}, \lambda \to H(\lambda) = [m_{\lambda}, n_{\lambda}],$ satisfies $[m_{\lambda_1}, n_{\lambda_1}] \supset [m_{\lambda_2}, n_{\lambda_2}]$ when $\lambda_1 < \lambda_2$, then $\widetilde{A} = \bigcup_{\lambda \in (0,1]} \lambda H(\lambda)$ $\in \widetilde{\mathbf{R}}$ and $A_{\lambda} = \bigcap_{n=1}^{\infty} H(\lambda_n)$, where $\lambda_n = [1 - 1/(n+1)]\lambda$.

DEFINITION 4.4 [8]. Let $\widetilde{F}:[a,b]\to \widetilde{\mathbf{R}}$. If the interval-valued function $F_{\lambda}(x)=[F_{\lambda}^{-}(x),F_{\lambda}^{+}(x)]$ is McShane integrable on [a,b] for any $\lambda\in(0,1]$, then \widetilde{F} is called McShane integrable on [a,b] and the integral value is defined by

$$(FM) \int_a^b \widetilde{F}(x) dx = \bigcup_{\lambda \in (0,1]} \lambda (IM) \int_a^b F_{\lambda}(x) dx$$
$$= \bigcup_{\lambda \in (0,1]} \lambda \left[(M) \int_a^b F_{\lambda}^-(x) dx, (M) \int_a^b F_{\lambda}^+(x) dx \right].$$

We write $\widetilde{F} \in FM[a,b]$.

DEFINITION 4.5. Let $\alpha:[a,b]\to \mathbf{R}$ be an increasing function and let $\widetilde{F}:[a,b]\to \widetilde{\mathbf{R}}$. If the interval-valued function $F_{\lambda}(x)=[F_{\lambda}^{-}(x),F_{\lambda}^{+}(x)]$ is McShane-Stieltjes integrable with respect to α on [a,b] for any $\lambda\in(0,1]$, then \widetilde{F} is called McShane-Stieltjes integrable with respect to α on [a,b] and the integral value is defined by

$$\begin{split} (FMS) \int_a^b \widetilde{F} d\alpha &= \cup_{\lambda \in (0,1]} \ \lambda (IMS) \int_a^b F_\lambda d\alpha \\ &= \cup_{\lambda \in (0,1]} \ \lambda \left[(MS) \int_a^b F_\lambda^- d\alpha, (MS) \int_a^b F_\lambda^+ d\alpha \right]. \end{split}$$

We write $\widetilde{F} \in FMS_{\alpha}[a, b]$.

THEOREM 4.6. Let $\alpha:[a,b]\to\mathbf{R}$ be an increasing function such that $\alpha\in C^1([a,b])$ and let $\widetilde{F}:[a,b]\to\widetilde{\mathbf{R}}$. If $\widetilde{F}\in FMS_\alpha[a,b]$, then $(FMS)\int_a^b\widetilde{F}d\alpha\in\widetilde{\mathbf{R}}$ and $[(FMS)\int_a^b\widetilde{F}d\alpha]_\lambda=\cap_{n=1}^\infty(IMS)\int_a^bF_{\lambda_n}d\alpha$, where $\lambda_n=[1-1/(n+1)]\lambda$.

Proof. Let $H:(0,1]\to I_{\mathbf{R}}, H(\lambda)=[(MS)\int_a^bF_\lambda^-d\alpha,(MS)\int_a^bF_\lambda^+d\alpha].$ Since $F_\lambda^-(x)$ and $F_\lambda^+(x)$ are increasing and decreasing on λ respectively, $F_{\lambda_1}^-(x)\leq F_{\lambda_2}^-(x)$ and $F_{\lambda_1}^+(x)\geq F_{\lambda_2}^+(x)$ on [a,b] when $0<\lambda_1\leq \lambda_2\leq 1$. From Theorem 3.8 we have

$$\left[(MS) \int_a^b F_{\lambda_1}^- d\alpha, (MS) \int_a^b F_{\lambda_1}^+ d\alpha \right]$$

$$\supset \left[(MS) \int_a^b F_{\lambda_2}^- d\alpha, (MS) \int_a^b F_{\lambda_2}^+ d\alpha \right].$$

From Theorem 3.4 and Lemma 4.3 we have

$$(FMS)\int_{a}^{b}\widetilde{F}d\alpha = \bigcup_{\lambda \in (0,1]} \lambda \left[(MS)\int_{a}^{b} F_{\lambda}^{-}d\alpha, (MS)\int_{a}^{b} F_{\lambda}^{+}d\alpha \right] \in \widetilde{\mathbf{R}}$$

and for any $\lambda \in (0,1]$, $[(FMS)\int_a^b \widetilde{F}d\alpha]_{\lambda} = \bigcap_{n=1}^{\infty} (IMS)\int_a^b F_{\lambda_n}d\alpha$, where $\lambda_n = [1-1/(n+1)]\lambda$.

THEOREM 4.7. Let $\alpha:[a,b]\to \mathbf{R}$ be an increasing function. If $\widetilde{F},\widetilde{G}\in FMS_{\alpha}[a,b]$ and $p,q\in \mathbf{R}$, then $p\widetilde{F}+q\widetilde{G}\in FMS_{\alpha}[a,b]$ and $(FMS)\int_a^b(p\widetilde{F}+q\widetilde{G})d\alpha=p(FMS)\int_a^b\widetilde{F}d\alpha+q(FMS)\int_a^b\widetilde{G}d\alpha$.

Proof. If \widetilde{F} , $\widetilde{G} \in FMS_{\alpha}[a,b]$, then the interval-valued functions $F_{\lambda}(x) = [F_{\lambda}^{-}(x), F_{\lambda}^{+}(x)]$ and $G_{\lambda}(x) = [G_{\lambda}^{-}(x), G_{\lambda}^{+}(x)]$ are McShane-Stieltjes integrable with respect to α on [a,b] for any $\lambda \in (0,1]$ and $(FMS) \int_a^b \widetilde{F} d\alpha = \bigcup_{\lambda \in (0,1]} \lambda (IMS) \int_a^b F_{\lambda} d\alpha$ and $(FMS) \int_a^b \widetilde{G} d\alpha = \bigcup_{\lambda \in (0,1]} \lambda (IMS) \int_a^b G_{\lambda} d\alpha$. From Theorem 3.5 we have $pF_{\lambda} + qG_{\lambda} \in IMS_{\alpha}[a,b]$ and $(IMS) \int_a^b (pF_{\lambda} + qG_{\lambda}) d\alpha = p(IMS) \int_a^b F_{\lambda} d\alpha + q(IMS) \int_a^b G_{\lambda} d\alpha$ for any $\lambda \in (0,1]$. Hence $p\widetilde{F} + q\widetilde{G} \in FMS_{\alpha}[a,b]$ and

$$(FMS) \int_{a}^{b} (p\widetilde{F} + q\widetilde{G}) d\alpha$$

$$= \bigcup_{\lambda \in (0,1]} \lambda (IMS) \int_{a}^{b} (pF_{\lambda} + qG_{\lambda}) d\alpha$$

$$= \bigcup_{\lambda \in (0,1]} \lambda \left(p(IMS) \int_{a}^{b} F_{\lambda} d\alpha + q(IMS) \int_{a}^{b} G_{\lambda} d\alpha \right)$$

$$= p \bigcup_{\lambda \in (0,1]} \lambda (IMS) \int_{a}^{b} F_{\lambda} d\alpha + q \bigcup_{\lambda \in (0,1]} \lambda (IMS) \int_{a}^{b} G_{\lambda} d\alpha$$

$$= p(FMS) \int_{a}^{b} \widetilde{F} d\alpha + q(FMS) \int_{a}^{b} \widetilde{G} d\alpha.$$

THEOREM 4.8. Let $\alpha:[a,b]\to \mathbf{R}$ be an increasing function and let $c\in(a,b)$. If $\widetilde{F}\in FMS_{\alpha}[a,c]$ and $\widetilde{F}\in FMS_{\alpha}[c,b]$, then $\widetilde{F}\in FMS_{\alpha}[a,b]$ and $(FMS)\int_a^c \widetilde{F}d\alpha+(FMS)\int_c^b \widetilde{F}d\alpha=(FMS)\int_a^b \widetilde{F}d\alpha$.

Proof. If $\widetilde{F} \in FMS_{\alpha}[a,c]$ and $\widetilde{F} \in FMS_{\alpha}[c,b]$, then the intervalvalued function $F_{\lambda}(x) = [F_{\lambda}^{-}(x), F_{\lambda}^{+}(x)]$ is McShane-Stieltjes integrable with respect to α on [a,c] and [c,b] for any $\lambda \in (0,1]$ and $(FMS) \int_{a}^{c} \widetilde{F} d\alpha$ $= \bigcup_{\lambda \in (0,1]} \lambda(IMS) \int_{a}^{c} F_{\lambda} d\alpha$ and $(FMS) \int_{c}^{b} \widetilde{F} d\alpha = \bigcup_{\lambda \in (0,1]} \lambda(IMS) \int_{c}^{b} F_{\lambda} d\alpha$. From Theorem 3.6 we have $F_{\lambda} \in IMS_{\alpha}[a,b]$ and $(IMS) \int_{a}^{b} F_{\lambda} d\alpha =$ $(IMS) \int_{a}^{c} F_{\lambda} d\alpha + (IMS) \int_{c}^{b} F_{\lambda} d\alpha$ for any $\lambda \in (0,1]$.

Hence $\widetilde{F} \in FMS_{\alpha}[a, b]$ and

$$\begin{split} &(FMS)\int_{a}^{b}\widetilde{F}d\alpha\\ &=\; \cup_{\lambda\in(0,1]}\;\;\lambda(IMS)\int_{a}^{b}F_{\lambda}d\alpha\\ &=\; \cup_{\lambda\in(0,1]}\;\;\lambda\left((IMS)\int_{a}^{c}F_{\lambda}d\alpha+(IMS)\int_{c}^{b}F_{\lambda}d\alpha\right)\\ &=\; \cup_{\lambda\in(0,1]}\;\;\lambda(IMS)\int_{a}^{c}F_{\lambda}d\alpha+\cup_{\lambda\in(0,1]}\;\lambda(IMS)\int_{c}^{b}F_{\lambda}d\alpha\\ &=\; (FMS)\int_{a}^{c}\widetilde{F}d\alpha+(FMS)\int_{c}^{b}\widetilde{F}d\alpha. \end{split}$$

THEOREM 4.9. Let $\alpha:[a,b]\to \mathbf{R}$ be an increasing function such that $\alpha\in C^1([a,b])$. If $\widetilde{F}=\widetilde{G}$ nearly everywhere on [a,b] and $\widetilde{F},\widetilde{G}\in FMS_{\alpha}[a,b]$, then $(FMS)\int_a^b \widetilde{F}d\alpha=(FMS)\int_a^b \widetilde{G}d\alpha$.

Proof. If $\widetilde{F} = \widetilde{G}$ nearly everywhere on [a,b] and $\widetilde{F}, \widetilde{G} \in FMS_{\alpha}[a,b]$, then $F_{\lambda} = G_{\lambda}$ nearly everywhere on [a,b] for any $\lambda \in (0,1]$ and F_{λ} and G_{λ} are McShane-Stieltjes integrable with respect to α on [a,b] for any $\lambda \in (0,1]$ and $(FMS) \int_a^b \widetilde{F} d\alpha = \bigcup_{\lambda \in (0,1]} \lambda (IMS) \int_a^b F_{\lambda} d\alpha$ and $(FMS) \int_a^b \widetilde{G} d\alpha = \bigcup_{\lambda \in (0,1]} \lambda (IMS) \int_a^b G_{\lambda} d\alpha$. From Theorem 3.7 we have $(IMS) \int_a^b F_{\lambda} d\alpha = (IMS) \int_a^b G_{\lambda} d\alpha$ for any $\lambda \in (0,1]$. Hence $(FMS) \int_a^b \widetilde{F} d\alpha = \bigcup_{\lambda \in (0,1]} \lambda (IMS) \int_a^b F_{\lambda} d\alpha = \bigcup_{\lambda \in (0,1]} \lambda (IMS) \int_a^b G_{\lambda} d\alpha = (FMS) \int_a^b \widetilde{G} d\alpha$.

THEOREM 4.10. Let $\alpha:[a,b]\to \mathbf{R}$ be an increasing function such that $\alpha\in C^1([a,b])$. If $\widetilde{F}\leq \widetilde{G}$ nearly everywhere on [a,b] and $\widetilde{F},\widetilde{G}\in FMS_{\alpha}[a,b]$, then $(FMS)\int_a^b \widetilde{F}d\alpha\leq (FMS)\int_a^b \widetilde{G}d\alpha$.

Proof. If $\widetilde{F} \leq \widetilde{G}$ nearly everywhere on [a,b] and $\widetilde{F}, \widetilde{G} \in FMS_{\alpha}[a,b]$, then $F_{\lambda} \leq G_{\lambda}$ nearly everywhere on [a,b] for any $\lambda \in (0,1]$ and F_{λ} and G_{λ} are McShane-Stieltjes integrable with respect to α on [a,b] for any $\lambda \in (0,1]$ and $(FMS) \int_a^b \widetilde{F} d\alpha = \bigcup_{\lambda \in (0,1]} \lambda (IMS) \int_a^b F_{\lambda} d\alpha$ and $(FMS) \int_a^b \widetilde{G} d\alpha = \bigcup_{\lambda \in (0,1]} \lambda (IMS) \int_a^b G_{\lambda} d\alpha$. From Theorem 3.8 we have $(IMS) \int_a^b F_{\lambda} d\alpha \leq (IMS) \int_a^b G_{\lambda} d\alpha$ for any $\lambda \in (0,1]$. Hence

$$(FMS) \int_{a}^{b} \widetilde{F} d\alpha$$

$$= \bigcup_{\lambda \in (0,1]} \lambda (IMS) \int_{a}^{b} F_{\lambda} d\alpha$$

$$\leq \bigcup_{\lambda \in (0,1]} \lambda (IMS) \int_{a}^{b} G_{\lambda} d\alpha$$

$$= (FMS) \int_{a}^{b} \widetilde{G} d\alpha.$$

DEFINITION 4.11. A fuzzy-number-valued function $\widetilde{F}:[a,b]\to \widetilde{\mathbf{R}}$ is bounded if there exist $\widetilde{A},\widetilde{B}\in \widetilde{\mathbf{R}}$ such that $\widetilde{A}\leq \widetilde{F}(x)\leq \widetilde{B}$ for all $x\in [a,b]$.

Note that a fuzzy-number-valued function $\widetilde{F}:[a,b]\to \widetilde{\mathbf{R}}$ is bounded if and only if the interval-valued function $F_{\lambda}:[a,b]\to I_{\mathbf{R}}$ is bounded for any $\lambda\in(0,1]$.

THEOREM 4.12. Let $\alpha:[a,b]\to \mathbf{R}$ be a strictly increasing function such that $\alpha\in C^1([a,b])$ and let $\widetilde{F}:[a,b]\to \widetilde{\mathbf{R}}$ be a bounded fuzzy-number-valued function. Then $\widetilde{F}\in FMS_{\alpha}[a,b]$ if and only if $\alpha'\widetilde{F}\in FM[a,b]$.

Proof. From Definition 4.5 we have $\widetilde{F} \in FMS_{\alpha}[a,b]$ if and only if $F_{\lambda} \in IMS_{\alpha}[a,b]$ for any $\lambda \in (0,1]$. Since $\widetilde{F} : [a,b] \to \widetilde{\mathbf{R}}$ is bounded if and only if $F_{\lambda} : [a,b] \to I_{\mathbf{R}}$ is bounded for any $\lambda \in (0,1]$, from Theorem 3.10 we have $F_{\lambda} \in IMS_{\alpha}[a,b]$ for any $\lambda \in (0,1]$ if and only if $\alpha'F_{\lambda} \in IM[a,b]$ for any $\lambda \in (0,1]$. Since α is strictly increasing on [a,b], $\alpha' > 0$ on [a,b]. Hence $\alpha'F_{\lambda}^- = (\alpha'F_{\lambda})^-$ and $\alpha'F_{\lambda}^+ = (\alpha'F_{\lambda})^+$ on [a,b] for any $\lambda \in (0,1]$. Hence $\alpha'F_{\lambda} = (\alpha'F)_{\lambda}$ on [a,b] for any $\lambda \in (0,1]$. From Definition 4.4 we have $\alpha'\widetilde{F} \in FM[a,b]$ if and only if $\alpha'F_{\lambda} \in IM[a,b]$ for any $\lambda \in (0,1]$. Hence $\widetilde{F} \in FMS_{\alpha}[a,b]$ if and only if $\alpha'\widetilde{F} \in FM[a,b]$. \square

References

- [1] D. H. Fremlin and J. Mendoza, On the integration of vector-valued functions, Illinois J. Math. 38 (1994), no. 1, 127-147.
- [2] R. A. Gordon, The integrals of Lebesgue, Denjoy, Perron and Henstock, Grad. Stud. Math. 4, Amer. Math. Soc., Providence, R.I., 1994.
- [3] ______, The McShane integral of Banach-valued functions, Illinois J. Math. 34 (1990), no. 3, 557-567.
- [4] S. Hu and V. Lakshmikantham, Some remarks on generalized Riemann integral, J. Math. Anal. Appl. 137 (1989), no. 2, 515-527.
- [5] Chengzhong Luo and Demu Wang, Extension of the integral of interval-valued function and the integral of fuzzy-valued function, Fuzzy Math. 3 (1983), no. 3, 45–52.
- [6] S. Nanda, On integration of fuzzy mappings, Fuzzy Sets and Systems 32 (1989), no. 1, 95-101.
- [7] C. K. Park, On Denjoy-McShane-Stieltjes integral, Commun. Korean Math. Soc. (to appear).
- [8] Congxin Wu and Zengtai Gong, On Henstock integrals of interval-valued functions and fuzzy-valued functions, Fuzzy Sets and Systems 115 (2000), no. 3, 377-391.
- [9] J. H. Yoon, G. S. Eun and Y. C. Lee, On McShane-Stieltjes integral, Kangweon-Kyungki Math. Jour. 5 (1997), no. 2, 217-225.

DEPARTMENT OF MATHEMATICS, KANGWON NATIONAL UNIVERSITY, CHUNCHEON 200-701, KOREA

E-mail: ckpark@kangwon.ac.kr