A UNIFORM CONVERGENCE THEOREM FOR APPROXIMATE HENSTOCK-STIELTJES INTEGRAL

SUNGMO IM, YUNG-JINN KIM AND DONG-IL RIM

ABSTRACT. In this paper, we introduce, for each approximate distribution \tilde{T} of [a,b], the approximate Henstock-Stieltjes integral with value in Banach spaces. The Henstock integral is a special case of this where $\tilde{T} = \{(\tau, [a,b]) : \tau \in [a,b]\}$. This new concept generalizes Henstock integral and abstract Perron-Stieltjes integral. We establish a uniform convergence theorem for approximate Henstock-Stieltjes integral, which is an improvement of the uniform convergence theorem for Perron-Stieltjes integral by Schwabik [3].

1. Approximate Henstock-Stieltjes integral

Assume that X, Y and Z are Banach spaces and that there is a bilinear mapping $B: X \times Y \longrightarrow Z$. We use the short notation xy = B(x, y) for the values of the bilinear form B for $x \in X, y \in Y$ and assume that

$$||xy||_Z \le ||x||_X ||y||_Y.$$

Triples of Banach spaces X, Y, Z with these properties are called *bilinear triples* and they are denoted by $\mathcal{B} = (X, Y, Z)$ (see [3]). For the case $\mathcal{B} = (\mathbb{R}, \mathbb{R}, \mathbb{R})$, we always assume B(x, y) = xy (product).

Let $x:[a,b]\times[a,b]\longrightarrow X$. A tagged interval $(\tau,[c,d])$ consists of an interval $[c,d]\subset[a,b]$ and a point $\tau\in[c,d]$, and we write $x(\tau,d)-x(\tau,c)$ simply by $x(\tau,[c,d])$. The tagged interval $(\tau,[c,d])$ is δ -fine for a gauge δ (a positive function on [a,b]) if

$$[c,d] \subset (\tau - \delta(\tau), \tau + \delta(\tau)).$$

Let $P = \{(\tau_j, [c_j, d_j]) : 1 \leq j \leq m\}$ be a finite collection of non-overlapping tagged intervals in [a, b]. If $(\tau_j, [c_j, d_j])$ is δ -fine for each i and $\bigcup_{j=1}^m [c_j, d_j] = [a, b]$, then P is called a δ -fine partition of [a, b].

Received November 15, 2003.

²⁰⁰⁰ Mathematics Subject Classification: 26A34, 26A42.

Key words and phrases: bilinear triple, approximate distribution, approximate Henstock-Stieltjes integral.

Assume that $\mathcal{B}=(X,Y,Z)$ is a bilinear triple and that functions $x:[a,b]\times[a,b]\longrightarrow X$ and $y:[a,b]\longrightarrow Y$ are given. We say that the Henstock-Stieltjes (shortly, H-) integral exists if there exists an element $I\in Z$ such that for every $\varepsilon>0$, there is a gauge δ on [a,b] such that for Riemann sums

$$S(dx, y, P) \equiv \sum_{j=1}^{m} x(\tau_j, J_j) y(\tau_j),$$

we have

$$||S(dx, y, P) - I||_Z < \varepsilon$$

provided $P = \{(\tau_j, J_j = [c_j, d_j]) : j = 1, ..., m\}$ is a δ -fine partition of [a, b]. We denote $I = (H) \int_a^b d[x(\tau, t)] y(\tau)$. Note that for a Henstock integrable function $y : [a, b] \longrightarrow \mathbb{R}$ the

Note that for a Henstock integrable function $y:[a,b] \longrightarrow \mathbb{R}$ the Hensock integral $\int_a^b y(\tau)d\tau$ is equal to the Henstock-Stieltjes integral $(H)\int_a^b d[x(\tau,t)]y(\tau)$ if we take $x(\tau,t)=t$ (see [1]).

Let $\tilde{T}_{\tau} \subset [a, b]$ be a measurable set with $\tau \in \tilde{T}_{\tau}$ and $d_{\tau}\tilde{T}_{\tau} = 1$ (the density of \tilde{T}_{τ} at τ is 1), i.e. for the Lebesgue measure μ

$$d_{\tau}\tilde{T}_{\tau} = \lim_{h \to 0^+} \frac{\mu(\tilde{T}_{\tau} \cap (\tau - h, \tau + h))}{2h} = 1$$

if τ is not an end point of \tilde{T}_{τ} , or

$$d_{\tau}\tilde{T}_{\tau} = \lim_{h \to 0^{+}} \frac{\mu(\tilde{T}_{\tau} \cap (\tau, \tau + h))}{h} = 1$$
$$(d_{\tau}\tilde{T}_{\tau} = \lim_{h \to 0^{+}} \frac{\mu(\tilde{T}_{\tau} \cap (\tau - h, \tau))}{h} = 1)$$

if τ is an end point of \tilde{T}_{τ} . Such a collection $\tilde{T}=\{\tilde{T}_{\tau}:d_{\tau}\tilde{T}_{\tau}=1,\ \tau\in[a,b]\}$ is called an approximate distribution on [a,b]. If a tagged interval $(\tau,[c,d])$ is δ -fine for a gauge δ and $\{c,\tau,d\}\subset \tilde{T}_{\tau}$, then we call $(\tau,[c,d])$ is $\delta(\tilde{T}_{\tau})$ -fine. A tagged partition $P=\{(\tau_j,[c_j,d_j]):1\leq j\leq m\}$ of [a,b] is said to be $\delta(\tilde{T})$ -fine if $(\tau_j,[c_j,d_j])$ is $\delta(\tilde{T}_{\tau_j})$ -fine for every j=1,2,...,m. Now we define an approximate Henstock-Stieltjes integral.

DEFINITION 1.1. Assume that $\mathcal{B} = (X,Y,Z)$ is a bilinear triple and that functions $x:[a,b]\times [a,b]\longrightarrow X$ and $y:[a,b]\longrightarrow Y$ are given. Let \tilde{T} be an approximate distribution on the interval [a,b]. We say that the approximate Henstock-Stieltjes (shortly, AH-) integral I with respect to \tilde{T} exists if there is an element $I\in Z$ such that for every $\varepsilon>0$ there is a gauge δ on [a,b] such that

$$||S(dx, y, P) - I||_Z < \varepsilon$$

provided P is a $\delta(\tilde{T})$ -fine partition of [a,b]. We denote $I=(\tilde{T}-AH)\int_a^b d[x(\tau,t)]y(\tau)$.

Let $\tilde{T}^0 = \{\tilde{T}_\tau = [a,b] \text{ for all } \tau \in [a,b] \}$. Then \tilde{T}^0 is an approximate distribution on [a,b]. Clearly, the AH-integral $(\tilde{T}^0-AH)\int_a^b d[x(\tau,t)]y(\tau)$ is the same as the H-integral $(H)\int_a^b d[x(\tau,t)]y(\tau)$. In this note, we study some properties of AH-integrals, and establish a uniform convergence theorem for approximate Henstock-Stieltjes integral, which is an improvement of the uniform convergence theorem for Perron-Stieltjes integral by Schwabik [3].

There is a function which is not H-integrable (i.e., not AH-integrable with respect to \tilde{T}^0) but AH-integrable with respect to some other \tilde{T} .

Example 1.2. Let us define a function $g:[0,1] \longrightarrow \mathbb{R}$ as follow:

$$g(s) = \begin{cases} \frac{1}{1-s}, & s = a_n \\ s, & s \in [0,1] - \{a_n : n \in \mathbb{N}\} \end{cases}$$

where $a_n = \frac{n}{n+1}$. Let us consider the bilinear triple $\mathcal{B} = (\mathbb{R}, \mathbb{R}, \mathbb{R})$. We define functions $x : [0,1] \times [0,1] \longrightarrow \mathbb{R}$ and $y : [0,1] \longrightarrow \mathbb{R}$ as $x(\tau,t) = g(t)$ and

$$y(\tau) = \begin{cases} 0, & \tau = a_n \\ 1, & \tau \in [0, 1] - \{a_n : n \in \mathbb{N}\} \end{cases}.$$

For any gauge δ on [0,1] we can choose a δ -fine partition

$$P = \{(\tau_i, [c_i, d_i]) : j = 1, ..., p\}$$

of [0,1] such that

$$\begin{split} (\tau_p,[c_p,d_p])&=(1,[a_m,1]),\quad (\tau_{p-1},[c_{p-1},d_{p-1}])=(a_m,[c_{p-1},a_m]),\\ c_{p-1}&=d_{p-2}\neq a_n \text{ for any } n=1,2,...,m-1, \text{ and}\\ &\qquad \{(a_1,[c_{j_1},d_{j_1}]),...,(a_{m-1},[c_{j_{m-1}},d_{j_{m-1}}])\}\subset P,\\ &\qquad a_k\in (c_{j_k},d_{j_k})\quad k=1,...,m-1. \end{split}$$

Then

$$S(dx, y, P) < 1 + (1 - \frac{1}{1 - a_m}).$$

But

$$\lim_{m \to \infty} \left[1 - \frac{1}{1 - a_m} \right] = -\infty.$$

This shows that the Henstock-Stieltjes integral (H) $\int_0^1 d[x(\tau,t)]y(\tau)$ does not exist. However we can show that the approximate Henstock-Stieltjes integral $(\tilde{T}-AH)$ $\int_0^1 d[x(\tau,t)]y(\tau)$ exists with the following \tilde{T} :

Let $\tilde{T} = \{\{\tau\} \cup ([0,1] - \{a_n\}_{n=1}^{\infty}) : \tau \in [0,1]\}$. Then \tilde{T} is an approximate distribution on [0,1]. Let $\varepsilon > 0$ and define a gauge δ on [a,b] by

$$\delta(\tau) = \begin{cases} 1, & \tau \in [0,1] - \{a_n : n \in \mathbb{N}\} \\ \frac{\varepsilon}{2^{n+1}}, & \tau = a_n \end{cases}.$$

Let $P=\{(\tau_j,J_j=[c_j,d_j]):j=1,...p\}$ be an $\delta(\tilde{T})$ -fine partition of [0,1]. And let

$$P_1 = \{(\tau_i, J_i = [c_i, d_i]) \in P : \tau_i = a_{n_i} \text{ for some } n_i\}.$$

Then $\sum_{(\tau_j,J_j)\in P_1} x(\tau_j,J_j)y(\tau_j)=0$. If $\tau_j\neq a_n$, then $\tilde{T}_{\tau_j}(\in \tilde{T})$ contains no elements $a_n,n=1,2,\ldots$ Hence

$$1 - \sum_{n=1}^{\infty} \frac{\varepsilon}{2^n} \le \sum_{(\tau_j, J_j) \in P - P_1} x(\tau_j, J_j) y(\tau_j) \le 1.$$

Hence $|S(dx, y, P) - 1| \le \varepsilon$, and this shows $(\tilde{T} - AH) \int_a^b d[x(\tau, t)] y(\tau) = 1$.

THEOREM 1.3. The approximate Henstock-Stieltjes integral is unique if it exits.

Proof. Suppose
$$(\tilde{T} - AH) \int_a^b d[x(\tau, t)] y(\tau) = I_1$$
 and

$$(\tilde{T} - AH) \int_{a}^{b} d[x(\tau, t)] y(\tau) = I_2.$$

Let $\varepsilon > 0$ be given. Then there is a gauge δ_k on [a, b] such that

$$\|S(dx,y,P_k) - I_k\|_Z < rac{arepsilon}{2}$$

provided P_k is a $\delta_k(\tilde{T})$ -fine partition of [a,b], k=1,2. Put $\delta(t)=\min\{\delta_1(t),\delta_2(t)\}, t\in [a,b]$. Then any $\delta(\tilde{T})$ -fine partition P of [a,b] is a $\delta_k(\tilde{T})$ -fine partition of [a,b], k=1,2. Hence

$$||I_1 - I_2||_Z \le ||S(dx, y, P) - I_1||_Z + ||S(dx, y, P) - I_2||_Z < \varepsilon.$$

This shows that the approximate Hensock-Stieltjes integral is unique if it exists. $\hfill\Box$

REMARK. Let \tilde{T}^1 , \tilde{T}^2 be approximate distributions on [a,b]. Suppose \tilde{T}^1 is a refinement of \tilde{T}^2 . If $(\tilde{T}^2 - AH) \int_a^b d[x(\tau,t)]y(\tau) = I$ exists, then

 $(\tilde{T}^1 - AH) \int_a^b d[x(\tau,t)] y(\tau)$ also exists and is equal to I. This can be seen easily because, if P is a $\delta(\tilde{T}^1)$ -fine partition of [a,b] then it is also a $\delta(\tilde{T}^2)$ -fine partition of [a,b].

From now on, all the integrals will be with respect to a fixed approximate distribution \tilde{T} and we write

$$(\tilde{T})\int_a^b d[x(\tau,t)]y(\tau)$$

for $(\tilde{T} - AH) \int_a^b d[x(\tau, t)] y(\tau)$. Since

$$S(dx, c_1y_1 + c_2y_2, P) = c_1S(dx, y_1, P) + c_2S(dx, y_2, P)$$

and

$$S(d(c_1x_1 + c_2x_2), y, P) = c_1S(dx_1, y, P) + c_2S(dx_2, y, P)$$

for any $\delta(\tilde{T})$ -fine partition P, we have the following theorem.

THEOREM 1.4. Assume that $\mathcal{B}=(X,Y,Z)$ is a bilinear triple and that the functions $x:[a,b]\times[a,b]\longrightarrow X$ and $y_i:[a,b]\longrightarrow Y$ are such that the AH-integrals $(\tilde{T})\int_a^b d[x(\tau,t)]y_i(\tau), i=1,2$ exist. Then for every $c_1,c_2\in\mathbb{R}$ the integral $(\tilde{T})\int_a^b d[x(\tau,t)](c_1y_1(\tau)+c_2y_2(\tau))$ exists and

$$\begin{split} &(\tilde{T}) \int_{a}^{b} d[x(\tau,t)] (c_{1}y_{1}(\tau) + c_{2}y_{2}(\tau)) \\ &= c_{1}(\tilde{T}) \int_{a}^{b} d[x(\tau,t)] y_{1}(\tau) + c_{2}(\tilde{T}) \int_{a}^{b} d[x(\tau,t)] y_{2}(\tau). \end{split}$$

If functions $x_i: [a,b] \times [a,b] \longrightarrow X$ and $y: [a,b] \longrightarrow Y$ are such that the AH- integrals $(\tilde{T}) \int_a^b d[x_i(\tau,t)]y(\tau), i=1,2$ exist, then for every $c_1,c_2 \in \mathbb{R}$ the AH-integral $(\tilde{T}) \int_a^b d[c_1x_1(\tau,t)+c_2x_2(\tau,t)]y(\tau)$ exists and

$$(\tilde{T}) \int_{a}^{b} d[c_{1}x_{1}(\tau, t) + c_{2}x_{2}(\tau, t)]y(\tau)$$

$$= c_{1}(\tilde{T}) \int_{a}^{b} d[x_{1}(\tau, t)]y(\tau) + c_{2}(\tilde{T}) \int_{a}^{b} d[x_{2}(\tau, t)]y(\tau).$$

2. Uniform convergence theorem

Let $x:[a,b]\times[a,b]\longrightarrow X$ and $E\subset[a,b]$. Given an approximate distribution \tilde{T} on [a,b] and a gauge δ on [a,b], let

$$_{ap}V_a^b(x, \tilde{T}, \delta, E) = \sup \left\{ \sum_{\tau_j \in E} \|x(\tau_j, J_j)\|_X \right\}$$

for the supremum over all $\delta(\tilde{T})$ -fine partition $P = \{(t_j, J_j) : j = 1, ..., k\}$ of the interval [a, b]. The approximate variation of x with respect to \tilde{T} in E is

$${}_{ap}V_a^b(x,\tilde{T},E)=\inf\nolimits_{\delta>0}\left\{{}_{ap}V_a^b(x,\tilde{T},\delta,E)\right\}.$$

If $_{ap}V_a^b(x,\tilde{T},E)<\infty$, we say that x is of approximately bounded variation on E. In Example 1.2, we can show that $_{ap}V_0^1(x,\tilde{T},E=\{a_n:n\in\mathbb{N}\})=0$. However, it is easy to see that $_{ap}V_0^1(x,\tilde{T}^0,E=\{a_n:n\in\mathbb{N}\})=\infty$.

We write

$$_{ap}V_a^b(x,\tilde{T},\delta), _{ap}V_a^b(x,\tilde{T})$$
 for $_{ap}V_a^b(x,\tilde{T},\delta,[a,b]), _{ap}V_a^b(x,\tilde{T},[a,b])$ respectively. (cf. [2], [3])

LEMMA 2.1. Assume that $\mathcal{B}=(X,Y,Z)$ is a bilinear triple and that the functions $x:[a,b]\times[a,b]\longrightarrow X$ and $y:[a,b]\longrightarrow Y$ are given. And let \tilde{T} be an approximate distribution on [a,b] and $E\subset[a,b]$. If $_{ap}V_a^b(x,\tilde{T},E)=0$ then for any $\varepsilon>0$ there exists a $\delta(\tilde{T})$ -fine partition $P=\{(\tau_j,J_j):j=1,...,k\}$ such that

$$\left\| \sum_{\tau_j \in E} x(\tau_j, J_j) y(\tau_j) \right\|_{Z} < \varepsilon.$$

Proof. Let $E_j = \{ \tau \in E : j-1 \leq ||y(\tau)||_Y < j \}, j=1,2,\cdots$. Then $a_p V_a^b(x,\tilde{T},E_j) = 0$ for any $j=1,2,\cdots$ since $a_p V_a^b(x,\tilde{T},E) = 0$. For any given $\varepsilon > 0$, there exists a gauge δ_j on [a,b] such that

$$_{ap}V_a^b(x, \tilde{T}, \delta_j, E_j) < \frac{\varepsilon}{j2^j}, (j = 1, 2, \ldots).$$

Define a gauge δ on [a, b] by

$$\delta(\tau) = \begin{cases} \delta_j(\tau), & \tau \in E_j, j = 1, 2, \dots \\ \text{arbitrary,} & \text{elsewhere} \end{cases}.$$

For a $\delta(\tilde{T})$ -fine partition $P = \{(t_j, J_j) : j = 1, ..., k\}$, we have

$$\left\| \sum_{\tau_j \in E} x(t_j, J_j) y(\tau_j) \right\|_{Z} \leq \sum_{\tau_j \in E} \left\| y(\tau_j) \right\|_{Y} \left\| x(t_j, J_j) \right\|_{X}$$

$$\leq \sum_{j=1}^{\infty} j[a_p V_a^b(x, \tilde{T}, \delta_j, E_j)] < \sum_{j=1}^{\infty} j \frac{\varepsilon}{j 2^j} = \varepsilon.$$

LEMMA 2.2. Assume that $\mathcal{B}=(X,Y,Z)$ is a bilinear triple and that AH-integral $(\tilde{T})\int_a^b d[x(\tau,t)]y(\tau)$ exists. If x is of approximately bounded variation on [a,b] and $_{ap}V_a^b(x,\tilde{T},E)=0$ for some $E\subset [a,b]$, then there exists a gauge δ such that $_{ap}V_a^b(x,\tilde{T},\delta)<\infty$ and

$$\left\| (\tilde{T}) \int_a^b d[x(\tau,t)] y(\tau) \right\|_Z \le \sup_{\tau \in [a,b] - E} \|y(\tau)\|_Y \cdot_{ap} V_a^b(x,\tilde{T},\delta)$$

Proof. Let $\varepsilon > 0$ be given. Since $\int_a^b d[x(\tau,t)]y(\tau)$ exists and x is of approximate bounded variation on [a,b], there are gauges δ_1,δ_2 on [a,b] such that

$$\left\| \sum_{j=1}^{k} x(\tau_j, J_j) y(\tau_j) - (\tilde{T}) \int_a^b d[x(\tau, t)] y(\tau) \right\|_{\mathcal{I}} < \varepsilon$$

for a $\delta_1(\tilde{T})$ -fine partition P of [a,b] and

$$_{ap}V_a^b(x,\tilde{T},\delta_2)<\infty.$$

And since $_{ap}V_a^b(x, \tilde{T}, E) = 0$, by Lemma 2.1, there is a gauge δ_3 on [a, b] such that

$$\left\| \sum_{\tau_j \in E} x(\tau_j, J_j) y(\tau_j) \right\|_{Z} < \varepsilon$$

for a $\delta_3(\tilde{T})$ -fine partition P of [a,b]. Put $\delta = \min\{\delta_1,\delta_2,\delta_3\}$. Then any $\delta(\tilde{T})$ -fine partition is a $\delta_k(\tilde{T})$ -fine partition of [a,b] (k=1,2,3). Hence ${}_{ap}V_a^b(x,\tilde{T},\delta) \leq_{ap}V_a^b(x,\tilde{T},\delta_2) < \infty$ and

$$\left\| \sum_{\tau_j \in E} x(\tau_j, J_j) y(\tau_j) \right\|_{Z} < \varepsilon$$

for a $\delta(\tilde{T})$ -fine partition P of [a,b]. For this partition P, we have

$$\begin{split} & \left\| (\tilde{T}) \int_a^b d[x(\tau,t)]y(\tau) \right\|_Z \\ \leq & \left\| (\tilde{T}) \int_a^b d[x(\tau,t)]y(\tau) - \sum_{j=1}^k x(\tau_j,J_j)y(\tau_j) \right\|_Z \\ & + \left\| \sum_{j=1}^k x(\tau_j,J_j)y(\tau_j) \right\|_Z \\ \leq & \varepsilon + \left\| \sum_{\tau_j \in E} x(\tau_j,J_j)y(\tau_j) \right\|_Z + \left\| \sum_{\tau_j \notin E} x(\tau_j,J_j)y(\tau_j) \right\|_Z \\ < & 2\varepsilon + \sum_{\tau_j \notin E} \|y(\tau_j)\|_Y \|x(\tau_j,J_j)\|_X \\ < & 2\varepsilon + \sup_{\tau \in [a,b]-E} \|y(\tau)\|_Y \sum_{\tau_j \notin E} \|x(\tau_j,J_j)\|_X \\ < & 2\varepsilon + \sup_{\tau \in [a,b]-E} \|y(\tau)\|_{Y_{ap}} V_a^b(x,\tilde{T},\delta). \end{split}$$

The statement is proved because $\varepsilon > 0$ can be arbitrarily small. \square

THEOREM 2.3 (Uniform Convergence Theorem). Assume that $\mathcal{B}=(X,Y,Z)$ is a bilinear triple and that functions $x:[a,b]\times[a,b]\longrightarrow X$ and $y,y_n:[a,b]\longrightarrow Y, n=1,2,...$ are given. If x is of approximately bounded variation on [a,b], AH-integrals $(\tilde{T})\int_a^bd[x(\tau,t)]y_n(\tau)$ exist for n=1,2,..., and the sequence $\{y_n\}$ converges uniformly to y on [a,b]-E, where $_{ap}V_a^b(x,\tilde{T},E)=0$, then the AH-integral $(\tilde{T})\int_a^bd[x(\tau,t)]y(\tau)$ exists and

$$(\tilde{T}) \int_a^b d[x(\tau,t)] y(\tau) = \lim_{n \to \infty} (\tilde{T}) \int_a^b d[x(\tau,t)] y_n(\tau).$$

Proof. Let $\varepsilon > 0$ be given. Since the sequence y_n converges y uniformly on [a,b]-E there is a positive integer N_1 such that for any $n > N_1$ and $\tau \in [a,b]-E$ we have

$$||y_n(s) - y(s)||_Y < \varepsilon.$$

By Lemma 2.2, there exists a gauge δ , such that $_{ap}V_a^b(x,\tilde{T},\delta_1)<\infty$ and

$$\begin{aligned} & \left\| (\tilde{T}) \int_{a}^{b} d[x(\tau,t)] y_{n}(\tau) - (\tilde{T}) \int_{a}^{b} d[x(\tau,t)] y_{m}(\tau) \right\|_{Z} \\ & \leq & \left\| (\tilde{T}) \int_{a}^{b} d[x(\tau,t)] (y_{n}(\tau) - y_{m}(\tau)) \right\|_{Z} \\ & \leq & \sup_{\tau \in [a,b]-E} \|y_{n}(\tau) - y_{m}(\tau)\|_{Y} \cdot {}_{ap}V_{a}^{b}(x,\tilde{T},\delta_{1}) \leq 2\varepsilon_{ap}V_{a}^{b}(x,\tilde{T},\delta_{1}) \end{aligned}$$

for $m, n > N_1$. Since Z is a Banach space this inequality implies that the limit

$$\lim_{n \to \infty} (\tilde{T}) \int_a^b d[x(\tau, t)] y_n(s) = I \in Z$$

exists. Let $N_2 \in \mathbb{N}$ be such that

$$\left\| (\tilde{T}) \int_{a}^{b} d[x(\tau, t)] y_{m}(\tau) - I \right\|_{Z} < \varepsilon$$

for $m > N_2$. Let now $m > N = \max(N_1, N_2)$ be fixed. Since the integral $(\tilde{T}) \int_a^b d[(\tau, t)] y_m(\tau)$ exists, there is a gauge $\delta_2(<\delta_1)$ on [a, b] such that

$$\left\| \sum_{j=1}^{k} x(\tau_j, J_j) y_m(\tau_j) - (\tilde{T}) \int_a^b d[x(\tau, t)] y_m(\tau) \right\|_Z < \varepsilon$$

provided $P = \{(\tau_j, J_j) : j = 1, ..., k\}$ is a $\delta_2(\tilde{T})$ - fine partition P of [a, b]. For such a $\delta_2(\tilde{T})$ - fine partition P, we have

$$\begin{split} & \left\| S(dx, y, P) - I \right\|_{Z} \\ &= \left\| \sum_{j=1}^{k} x(\tau_{j}, J_{j}) y(\tau_{j}) - I \right\|_{Z} \\ &\leq \left\| \sum_{j=1}^{k} [x(\tau_{j}, J_{j}) y(\tau_{j}) - x(\tau_{j}, J_{j}) y_{m}(\tau_{j})] \right\|_{Z} \\ &+ \left\| \sum_{j=1}^{k} x(\tau_{j}, J_{j}) y_{m}(\tau_{j}) - (\tilde{T}) \int_{a}^{b} d[x(\tau, t)] y_{m}(\tau) \right\|_{Z} \end{split}$$

$$+ \left\| (\tilde{T}) \int_{a}^{b} d[x(\tau,t)] y_{m}(\tau) - I \right\|_{Z}$$

$$\leq 2\varepsilon + \left\| \sum_{j=1}^{k} x(\tau_{j}, J_{j}) [y(\tau_{j}) - y_{m}(\tau_{j})] \right\|_{Z}$$

$$\leq 2\varepsilon + \left\| \sum_{\tau_{j} \in [a,b]-E} x(\tau_{j}, J_{j}) [y(\tau_{j}) - y_{m}(\tau_{j})] \right\|_{Z}$$

$$+ \left\| \sum_{\tau_{j} \in E} x(\tau_{j}, J_{j}) [y(\tau_{j}) - y_{m}(\tau_{j})] \right\|_{Z}$$

$$\leq 2\varepsilon + \sup_{\tau \in [a,b]-E} \|y(\tau) - y_{m}(\tau)\|_{Y} \sup_{ap} V_{a}^{b}(x, \tilde{T}, \delta_{2})$$

$$+ \left\| \sum_{\tau_{j} \in E} x(\tau_{j}, J_{j}) [y(\tau_{j}) - y_{m}(\tau_{j})] \right\|_{Z}$$

$$\leq 2\varepsilon + \varepsilon_{ap} V_{a}^{b}(x, \tilde{T}, \delta_{2}) + \left\| \sum_{\tau_{j} \in E} x(\tau_{j}, J_{j}) [y(\tau_{j}) - y_{m}(\tau_{j})] \right\|_{Z} .$$

By Lemma 2.1 there is a gauge δ_3 such that whenever $P = \{(\tau_j, J_j) : j = 1, ..., k\}$ is a $\delta_3(\tilde{T})$ -fine partition of [a, b] we have

$$\left\| \sum_{\tau_j \in E} x(\tau_j, J_j) [y(\tau_j) - y_m(\tau_j)] \right\|_z < \varepsilon.$$

Let $\delta = \min[\delta_2, \delta_3]$. Then, if we consider $\delta(\tilde{T})$ -fine partitions P of [a, b], we get

$$||S(dx, y, P) - I||_Z < 2\varepsilon + \varepsilon_{ap}V_a^b(x, \tilde{T}, \delta) + \varepsilon.$$

This means that the integral $(\tilde{T})\int_a^b d[x(\tau,t)]y(\tau)$ exists and

$$(\tilde{T}) \int_a^b d[x(\tau,t)] y(\tau) = \lim_{n \to \infty} (\tilde{T}) \int_a^b d[x(\tau,t)] y_n(\tau).$$

References

[1] R. A. Gordon, The integrals of Lebesgue, Denjoy, Perron and Henstock, Amer. Math. Soc., Providence, 1994.

- [2] R. Henstock, Lectures on the theory of integration, World Scientific, Singapore, 1988.
- [3] S. Schwabik, Abstract Perron-Stieltjes integral, Math. Bohem. 121 (1996), no. 4, 425–447.

SungMo IM, Department of Mathematics, Chungbuk National University, Cheongju 361-763, Korea

E-mail: sungim@cbucc.chungbuk.ac.kr

Yung-Jinn Kim, Department of Mathematics, Chungbuk National University, Cheongju 361-763, Korea

E-mail: yjkim@chungbuk.ac.kr

Dong-Il Rim, Department of Mathematics, Chungbuk National University, Cheongju 361-763, Korea

E-mail: dirim@cbucc.chungbuk.ac.kr