WEAK LAWS FOR WEIGHTED SUMS OF RANDOM VARIABLES

Soo Hak Sung

ABSTRACT. Let $\{a_{ni}, u_n \leq i \leq v_n, n \geq 1\}$ be an array of constants. Let $\{X_{ni}, u_n \leq i \leq v_n, n \geq 1\}$ be $\{a_{ni}\}$ -uniformly integrable random variables. Weak laws for the weighted sums $\sum_{i=u_n}^{v_n} a_{ni} X_{ni}$ are obtained.

1. Introduction

Let $\{u_n, n \geq 1\}$ and $\{v_n, n \geq 1\}$ be two sequences of integers (not necessarily positive or finite), and let $\{k_n, n \geq 1\}$ be a sequence of positive integers such that $k_n \to \infty$ as $n \to \infty$. Consider an array of constants $\{a_{ni}, u_n \leq i \leq v_n, n \geq 1\}$ and an array of random variables $\{X_{ni}, u_n \leq i \leq v_n, n \geq 1\}$ defined on a probability space (Ω, \mathcal{F}, P) . When $u_n = 1, v_n = k_n, n \geq 1$, weak laws of large numbers for the array $\{X_{ni}\}$ have been established by several authors (see, Gut [2], Hong and Lee [3], Hong and Oh [4], and Sung [8]). An array $\{X_{ni}, 1 \leq i \leq k_n, n \geq 1\}$ is said to be Cesàro uniformly integrable if

(1)
$$\lim_{a \to \infty} \sup_{n \ge 1} \frac{1}{k_n} \sum_{i=1}^{k_n} E|X_{ni}|I(|X_{ni}| > a) = 0.$$

This condition was introduced by Chandra [1].

Ordonez Cabrera [5] extended the notion of Cesàro uniform integrability to $\{a_{ni}\}$ -uniform integrability as follows.

Received July 16, 2003.

²⁰⁰⁰ Mathematics Subject Classification: 60F05, 60F25.

Key words and phrases: weak law of large numbers, weighted sums, r-mean convergence, convergence in probability, arrays, uniform integrability.

This work was supported by Korea Research Foundation Grant (KRF-2002-015-CP0037).

An array of random variables $\{X_{ni}, u_n \leq i \leq v_n, n \geq 1\}$ is said to be $\{a_{ni}\}$ -uniformly integrable if

(2)
$$\lim_{a \to \infty} \sup_{n \ge 1} \sum_{i=u_n}^{v_n} |a_{ni}| E|X_{ni}| I(|X_{ni}| > a) = 0.$$

Note that $\{a_{ni}\}$ -uniform integrability reduces to Cesàro uniform integrability when $a_{ni} = k_n^{-1}$ for $1 \le i \le k_n$ and 0 elsewhere. Ordonez Cabrera [5] obtained weak laws for weighted sums of $\{a_{ni}\}$ -uniformly integrable random variables, where the weights satisfy $\lim_{n\to\infty} \sup_{u_n \le i \le v_n} |a_{ni}| = 0$ and $\sup_{n\ge 1} \sum_{i=u_n}^{v_n} |a_{ni}|^r < \infty$ for some $0 < r \le 1$.

In this paper, we prove the results of Ordonez Cabrera [5] under a weaker condition on the weights.

2. Main result

Throughout this section, let $\{a_{ni}, u_n \leq i \leq v_n, n \geq 1\}$ be an array of constants, and let $\{X_{ni}, u_n \leq i \leq v_n, n \geq 1\}$ be an array of random variables.

To prove the main result, we will need the following lemmas.

LEMMA 1. (Sung [9]). Suppose that $\{X_{ni}, u_n \leq i \leq v_n, n \geq 1\}$ is an array of random variables satisfying the following conditions.

$$\sup_{n\geq 1} \frac{1}{k_n} \sum_{i=u_n}^{v_n} E|X_{ni}|^r < \infty$$

and

(4)
$$\lim_{a \to \infty} \sup_{n \ge 1} \frac{1}{k_n} \sum_{i=u_n}^{v_n} E|X_{ni}|^r I(|X_{ni}|^r > a) = 0,$$

where r > 0 and $\{k_n, n \ge 1\}$ is a sequence of positive numbers such that $k_n \to \infty$ as $n \to \infty$. If $\beta > r$, then

$$\sum_{i=u_n}^{v_n} E|X_{ni}|^{\beta} I(|X_{ni}|^r \le k_n) = o(k_n^{\beta/r}).$$

LEMMA 2. (Sung [9]). Suppose that $\{X_{ni}, u_n \leq i \leq v_n, n \geq 1\}$ is an array of random variables satisfying (3) and (4) for some 0 < r < 1 and $\{k_n, n \geq 1\}$. Then

$$\frac{\sum_{i=u_n}^{v_n} X_{ni}}{k_n^{1/r}} \to 0$$

in L^r and, hence, in probability as $n \to \infty$.

LEMMA 3. Let r > 0. Let $\{|X_{ni}|^r, u_n \leq i \leq v_n, n \geq 1\}$ be $\{|a_{ni}|^r\}$ -uniformly integrable random variables, where $\{a_{ni}, u_n \leq i \leq v_n, n \geq 1\}$ is an array of constants satisfying $\lim_{n\to\infty} \sup_{u_n\leq i\leq v_n} |a_{ni}| = 0$. Assume that

(5)
$$\sup_{n\geq 1} \sum_{i=u}^{v_n} |a_{ni}|^r E|X_{ni}|^r < \infty.$$

If $\beta > r$, then

$$\sum_{i=u_n}^{v_n} |a_{ni}|^{\beta} E|X_{ni}|^{\beta} I(|X_{ni}|^r \le k_n) = o(1),$$

where $k_n = 1/\sup_{u_n \le i \le v_n} |a_{ni}|^r$.

Proof. Take $k_n^{1/r}a_{ni}X_{ni}$ instead of X_{ni} in Lemma 1. Then we have by (5) that

$$\sup_{n\geq 1} \frac{1}{k_n} \sum_{i=u_n}^{v_n} E|k_n^{1/r} a_{ni} X_{ni}|^r < \infty.$$

Since $k_n |a_{ni}|^r \leq 1$ for $u_n \leq i \leq v_n$, it follows that

$$\lim_{a \to \infty} \sup_{n \ge 1} \frac{1}{k_n} \sum_{i=n}^{v_n} E|k_n^{1/r} a_{ni} X_{ni}|^r I(|k_n^{1/r} a_{ni} X_{ni}|^r > a)$$

$$\leq \lim_{a \to \infty} \sup_{n \geq 1} \sum_{i=u_n}^{v_n} |a_{ni}|^r E|X_{ni}|^r I(|X_{ni}|^r > a) = 0.$$

Thus we obtain by Lemma 1 that

$$\frac{1}{k_n^{\beta/r}} \sum_{i=u_n}^{s_n} E|k_n^{1/r} a_{ni} X_{ni}|^{\beta} I(|k_n^{1/r} a_{ni} X_{ni}|^r \le k_n) = o(1).$$

So the result follows since $k_n \leq 1/|a_{ni}|^r$ for $u_n \leq i \leq v_n$.

Now, we state and prove our main result which generalizes some results in the literature in this area. See the corollaries and example following Theorem 1.

THEOREM 1. Let $0 < r \le 1$. Let $\{a_{ni}, u_n \le i \le v_n, n \ge 1\}$ and $\{X_{ni}, u_n \le i \le v_n, n \ge 1\}$ be as in Lemma 3. When r = 1, we assume further that $\{X_{ni}\}$ is an array of (rowwise) pairwise independent random variables with $EX_{ni} = 0$, i.e., for each fixed $n, X_{n,u_n}, \dots, X_{n,v_n}$ are pairwise independent. Then

$$\sum_{i=u_n}^{v_n} a_{ni} X_{ni} \to 0$$

in L^r and, hence, in probability as $n \to \infty$.

Proof. Take $k_n=1/\sup_{u_n\leq i\leq v_n}|a_{ni}|^r$ and $k_n^{1/r}a_{ni}X_{ni}$ instead of X_{ni} in Lemma 2. When 0< r<1, the result follows from Lemma 2.

We now prove the result when r=1. Define $X'_{ni}=X_{ni}I(|X_{ni}|\leq k_n)$ and $X''_{ni}=X_{ni}-X'_{ni}$ for $u_n\leq i\leq v_n$ and $n\geq 1$. Since $X'_{n,u_n},\cdots,X'_{n,v_n}$ are pairwise independent random variables, we have by Lemma 3 with r=1 and $\beta=2$ that

$$E\left|\sum_{i=u_n}^{v_n} a_{ni} (X'_{ni} - EX'_{ni})\right|^2 \le \sum_{i=u_n}^{v_n} a_{ni}^2 E|X'_{ni}|^2 \to 0$$

as $n \to \infty$. Also we obtain by the definition of $\{a_{ni}\}$ -uniform integrability that

$$E|\sum_{i=u_n}^{v_n} a_{ni}(X_{ni}'' - EX_{ni}'')| \le 2\sum_{i=u_n}^{v_n} |a_{ni}|E|X_{ni}''| \to 0$$

as $n \to \infty$, since $k_n \to \infty$ as $n \to \infty$. Thus we have

$$E\left|\sum_{i=u_n}^{v_n} a_{ni} X_{ni}\right|$$

$$\leq E\left|\sum_{i=u_n}^{v_n} a_{ni} (X'_{ni} - EX'_{ni})\right| + E\left|\sum_{i=u_n}^{v_n} a_{ni} (X''_{ni} - EX''_{ni})\right|$$

$$\leq (E\left|\sum_{i=u_n}^{v_n} a_{ni} (X'_{ni} - EX'_{ni})\right|^2)^{1/2} + E\left|\sum_{i=u_n}^{v_n} a_{ni} (X''_{ni} - EX''_{ni})\right| \to 0$$

as $n \to \infty$.

COROLLARY 1. Let 0 < r < 1. Let $\{|X_{ni}|^r, u_n \leq i \leq v_n, n \geq 1\}$ be $\{|a_{ni}|^r\}$ -uniformly integrable random variables, where $\{a_{ni}, u_n \leq i \leq v_n, n \geq 1\}$ is an array of constants satisfying $\lim_{n\to\infty} \sup_{u_n\leq i\leq v_n} |a_{ni}| = 0$ and for some constant C > 0

(6)
$$\sum_{i=u_n}^{v_n} |a_{ni}|^r < C \text{ for all } n.$$

Then

$$\sum_{i=u_n}^{v_n} a_{ni} X_{ni} \to 0$$

in L^r and, hence, in probability as $n \to \infty$.

Proof. From Theorem 1, it is enough to show that (5) holds. Since $\{|X_{ni}|^r\}$ is $\{|a_{ni}|^r\}$ -uniformly integrable, there exists a > 0 such that

$$\sup_{n\geq 1} \sum_{i=u_n}^{v_n} |a_{ni}|^r E|X_{ni}|^r I(|X_{ni}|^r > a) \leq 1.$$

Then

$$E|X_{ni}|^r = E|X_{ni}|^r I(|X_{ni}|^r \le a) + E|X_{ni}|^r I(|X_{ni}|^r > a)$$

$$< a + E|X_{ni}|^r I(|X_{ni}|^r > a),$$

which implies by (6) that

$$\sup_{n\geq 1} \sum_{i=u_n}^{v_n} |a_{ni}|^r E|X_{ni}|^r$$

$$\leq a \cdot \sup_{n\geq 1} \sum_{i=u_n}^{v_n} |a_{ni}|^r + \sup_{n\geq 1} \sum_{i=u_n}^{v_n} |a_{ni}|^r E|X_{ni}|^r I(|X_{ni}|^r > a)$$

$$\leq a \cdot C + 1.$$

Hence (5) is satisfied.

The above corollary has been proved by Ordonez Cabrera [5]. Rohatgi [7] established a weaker result (convergence in probability) under the stronger condition that $\{X_n, n \geq 1\}$ is a sequence of independent random variables which is uniformly bounded by a random variable X with $E|X|^r < \infty$. Wang and Rao [10] extended Rohatgi's result to L^r -convergence under the uniform integrability (without independent condition).

COROLLARY 2. Let $\{X_{ni}, u_n \leq i \leq v_n, n \geq 1\}$ be $\{a_{ni}\}$ -uniformly integrable (rowwise) pairwise independent random variables with $EX_{ni} = 0$ for $u_n \leq i \leq v_n$ and $n \geq 1$, where $\{a_{ni}, u_n \leq i \leq v_n, n \geq 1\}$ is an array of constants satisfying $\lim_{n\to\infty} \sup_{u_n\leq i\leq v_n} |a_{ni}| = 0$ and for some constant C>0

(7)
$$\sum_{i=u_n}^{v_n} |a_{ni}| < C \text{ for all } n.$$

Then

$$\sum_{i=u_n}^{v_n} a_{ni} X_{ni} \to 0$$

in L^1 and, hence, in probability as $n \to \infty$.

Proof. By Theorem 1, it is enough to show that (5) holds when r = 1. The proof of the rest is similar to that of Corollary 1 and is omitted. \square

The above corollary has been proved by Ordonez Cabrera [5]. Pruitt [6] established a weaker result (convergence in probability) under the stronger condition that $\{X_n, n \geq 1\}$ is a sequence of independent and identically distributed random variables with $EX_n = 0$ for $n \geq 1$. Rohatgi [7] extended Pruitt's result to a sequence of independent random variables which is uniformly bounded by a random variable X with $E|X| < \infty$. Wang and Rao [10] extended Rohatgi's result to L^1 -convergence for uniformly integrable pairwise independent random variables.

The following example shows that the conditions of Theorem 1 are weaker than the conditions of Corollary 2.

EXAMPLE 1. Let $\{X_n, n \geq 1\}$ be a sequence of pairwise independent random variables such that $X_n = \pm 1/\log n$ with probability 1/2 if n is not a perfect cube, and $X_n = \pm n^{1/3}$ with probability 1/2 if n is a perfect cube (i.e., $n = j^3$ for some positive integer j). Define an array of constants $\{a_{ni}, i \geq 1, n \geq 1\}$ as follows.

$$a_{ni} = \begin{cases} \log n/n & \text{if } 1 \le i \le n, \\ 0 & \text{if } i > n. \end{cases}$$

Since $\sum_{i=1}^{\infty} |a_{ni}| = \log n$, we can not apply this example to Corollary 2. Observe that

$$\sum_{i \neq j^3, i \le n} E|X_i| = \sum_{i \neq j^3, i \le n} 1/\log i = O(n/\log n)$$

and

$$\sum_{i=j^3, i \le n} E|X_i| = \sum_{i=j^3, i \le n} i^{1/3} = \sum_{j^3 \le n} j = \frac{j_0(j_0+1)}{2} \le \frac{n^{1/3}(n^{1/3}+1)}{2},$$

where $j_0 = \max\{j : j^3 \le n\}$. Thus we have

$$\sum_{i=1}^{\infty} |a_{ni}| E|X_i| = \frac{\log n}{n} \sum_{i=1}^{n} E|X_i|$$

$$\leq \frac{\log n}{n} \left(O(\frac{n}{\log n}) + \frac{n^{1/3}(n^{1/3} + 1)}{2} \right) = O(1).$$

If a > 1, then

$$\sum_{i=1}^{\infty} |a_{ni}| E|X_i| I(|X_i| > a) = \frac{\log n}{n} \sum_{i=j^3, a^3 < i \le n} E|X_i|.$$

Hence, for a > 1, we have

$$\sup_{n\geq 1} \sum_{i=1}^{\infty} |a_{ni}| E|X_i| I(|X_i| > a) = \sup_{n>a^3} \frac{\log n}{n} \sum_{i=j^3, a^3 < i \leq n} E|X_i|$$

$$\leq \sup_{n>a^3} \frac{n^{1/3} (n^{1/3} + 1) \log n}{2n} \to 0$$

as $a \to \infty$. Therefore the conditions of Theorem 1 with r=1 are satisfied. By Theorem 1, we obtain

$$\sum_{i=1}^{\infty} a_{ni} X_i \to 0$$

in L^1 and, hence, in probability as $n \to \infty$.

References

- [1] T. K. Chandra, Uniform integrability in the Cesàro sense and the weak law of large numbers, Sankhya, Ser. A 51 (1989), no. 3, 307-317.
- [2] A. Gut, The weak law of large numbers for arrays, Statist. Probab. Lett. 14 (1992), no. 1, 49-52.

- [3] D. H. Hong and S. Lee, A general weak law of large numbers for arrays, Bull. Inst. Math. Acad. Sinica 24 (1996), no. 3, 205-209.
- [4] D. H. Hong and K. S. Oh, On the weak law of large numbers for arrays, Statist. Probab. Lett. 22 (1995), no. 1, 55-57.
- [5] M. Ordonez Cabrera, Convergence of weighted sums of random variables and uniform integrability concerning the weights, Collect. Math. 45 (1994), no. 2, 121-132.
- [6] W. E. Pruitt, Summability of independent random variables, J. Math. Mech. 15 (1966), 769-776.
- [7] V. K. Rohatgi, Convergence of weighted sums of independent random variables, Proc. Cambridge Philos. Soc. 69 (1971), 305-307.
- [8] S. H. Sung, Weak law of large numbers for arrays, Statist. Probab. Lett. 38 (1998), no. 2, 101-105.
- [9] _____, Weak law of large numbers for arrays of random variables, Statist. Probab. Lett. 42 (1999), no. 3, 293-298.
- [10] X. C. Wang and M. B. Rao, A note on convergence of weighted sums of random variables, Internat. J. Math. Math. Sci. 8 (1985), no. 4, 805-812.

DEPARTMENT OF APPLIED MATHEMATICS, PAI CHAI UNIVERSITY, TAEJON 302-735, KOREA

E-mail: sungsh@mail.pcu.ac.kr