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ON THE STRUCTURE OF A MUSH

YOUNG-KYUN YANG AND JOUNG-NAM LEE

ABSTRACT. We have obtained a simplified model for the mush un-
der the assumption of the temperature, the solid fraction and the
vertical component of the velocity, depend on upward coordinate 2
only. We have found solutions in the asymptotical limit and solved
numerically for the model.

1. Introduction

During solidification of a liquid of two or more components with
sufficiently high solutal concentrations, the planar freezing surface is
morphologically unstable (Mullins and Sekerka [11]) and solidification is
dendritic. As a result, the melt is separated from the eutectic solid by
a region consisting of solid dendrites and interdendritic liquid, generally
referred to as the mushy zone.

It is observed in experiments involving the solification of an ammo-
nium chloride solution (Roberts and Loper ([10]), Chen and Chen ([2])
and Tait and Jaupart ([13])) that finger-like convection starts in the
fluid region just above the mush soon after the experiments are initi-
ated, and it coexists for a while with plume convection with associated
chimneys in the mush. As the plume convection becomes stronger with
time, the fingers weaken and eventually completely disappeared, so that
the upward convection is carried entirely by the plumes. We observe
something resembling a steady state in which the mush-liquid interface
defined by the tops of the dendrite trees rises with a constant speed. We
analyze this last stage of the experiments in which the chimneys and
flow are fully developed.
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We seek solutions independent of time ¢ in a frame fixed to the mush-
solid interface, which moves upward relative to the solid with a pre-
scribed constant speed U. The liquid region has fixed temperature T
and composition £ of light constitutent as z — oo, where z measures
vertical displacement in the moving frame. The temperature decreases
downward, and we consider the case in which a mushy zone separates a
completely solid region from a completely liquid region. In this model
problem we assume that the eutectic front, at which the temperature
is equal to the eutectic temperature 7, and below which the system is
completely solid, can be maintained at (or very close to) the fixed po-
sition z = 0. The mush-liquid interface z = h is a free boundary to be
determined as part of the solution. In general h = h(z,y) though, in our
case, it will be assumed a constant, as suggested by the experiments of
ammonium chloride solution (Roberts and Loper ([10]), Chen and Chen
(12)).

We introduce a set of governing equations and boundary conditions
for a mush that have been proposed by Hills, Loper and Roberts ([8]),
based on principles of diffusive mixture theory. First, we treat the mush
as a new single continuum phase. The temperature and the composition
of solute in the interstitial fluid are approximately uniform on the scale
that is small compared with the macroscopic dimensions of the system
but large compared with the pore size between the crystals of the matrix.
Second, we assume that the mush is in a complete local equilibrium at all
times. In other words, the time-scales of melting and freezing processes
are negligibly short compared with those of principal interest in studying
the evolution of the mushy zone. A system in motion is clearly not in
thermodynamic equilibrium, but if the motion is sufficiently slow a state
close to local thermodynamic equilibrium will prevail. Thus, although
the representative points in the phase plane for elements of solid and
liquid phase will not lie precisely on solidus and liquidus, we are entitled,
when the system evolves sufficiently slowly, to consider that they do so.

We let €™, ¢! and £€° be the mass fraction of light constitutent of
the mixture, liquidus, and solidus, respectively, and let ¢ be the mass
fraction of solid. Then £€™ and ¢ are related by the so called ‘lever rule’,

(1.1) £ = ¢ + (1 - ¢)€.

With €™ being directly externally prescribed and ¢ and ¢° being indi-
rectly prescribed through 7', (1.1) solves for ¢.

Note that for convenience, we will use the simple notation ¢ for &
from now on.
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The density is defined as

(1.2) p=p"+7,
where
(1.3) pP=¢p,  p=p(l-9¢),

are respectively mass of solid and liquid per unit volume of mixture ;
these partial densities are related to the actual solid and liquid densities
ps and p; by
(1.4) l=mx,  p°=(1-x)ps
where x is the liquid volume fraction.

The barycentric velocity u is defined as

(1.5) pu = p*u’ + plul.

If we substitute (1.3) into (1.5), the barycentric velocity may be ex-
pressed as

(1.6) u:us+w,
where
(1.7) w=(1-¢)(u' —u’),

is the mass flux of interdendritic fluid relative to the solid phase. In
this study, the density is treated as a constant everywhere except in the
buoyancy term and the solid phase is constrained to move in rigid-body
motion. Now conservation of total mass requires that

(1.8) V.w=0.

We assume that the thermal conductivity, the specific heat per unit
volume and the latent heat of solidification per unit volume, are constant
and independent of phases. Also, we assume that the solutal diffusivity
in the liquid is constant and the diffusivity in the solid phase is neglected.

The equations describing conservation of a constitutent in the liquid
phase and energy in both phases can be written as

Ds¢ _ Ds(¢€)
(19) EJrWVE-— Dt +DOV ((1 —¢)V§),
DT Dy

where D, is the material diffusivity in the liquid phase, L is the latent
heat, ¢, is the specific heat, & is the thermal conductivity, p, is a ref-
erence density, and Ds/Dt = 3/0t + u® - V is the material derivative
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following the solid phase. The first term on the right hand side of the
equation (1.9) represents the increase (or decrease) of composition of the
liquid due to freezing (or melting) of the solid phase, while the second
is the Fickian diffusive term which is commonly negligibly small. The
first term on the right hand side of the equation (1.10), represents the
thermal diffusion, and the second is the release (absorption) of latent
heat of fusion as solid phase freezes (melts).

The solid phase is assumed to be rigidly attached to a substrate so
that only the motion of the liquid phase is of concern. The percolation
of the liquid phase relative to the solid is assumed to be governed by
Darcy’s law:

ﬁ = —Vp— (o' — pr)gz,

where 7 is the dynamic viscosity of the liquid, p is the dynamic pressure
i.e. with the hydrostatic pressure field subtracted, g is the gravity, z is
the unit upward vector, and -y is the permeability of the mush.

The permeability v is a function of both the mush porosity x =1—¢
and the morphology of the crystal interfaces within it. Many different
empirical and semi-empirical relationships for v have been determined
for various porous media. One example is the Kozeny equation which
gives 7 = c,x3/M?, where ¢, is a constant and M is the specific sur-
face area of the phase boundaries per unit volume of the porous media.
This illustrates the general trends of all such formulae, namely that v
increases with the porosity and decreases with the specific surface area.
Worster ([15]) used

(1.12) v =X

which is suggested by the form of the Kozeny equation with M held
constant. We note that the Kozeny-Carmen equation vy = x3d?/180(1 —
x)? (d is the base diameter of a slender cone approximating the dendrite.)
used by Chen and Chen ([2]), in which v — oo as x — 1, is inappropriate
when, as in this study, the Darcy equation is used to describe the flow
in the porous medium rather than the more general Brinkman equation
(Worster, [15]). We use equation (1.12) for the permeability. Since both
thermal and compositional gradients exist across the mush, we must
take account of both in calculating the overall density difference driving
compositional convection. Thus, to determine the buoyancy forcing in
(1.11), we use a linearized equation of state

(1.13) pl =,0r[1—a(T_Tr) _ﬂ(f—gr)]a

(1.11)
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where a and 3, are coeflicients of thermal and compositional expansion,
assumed constant, and T, & are reference values of the temperature
and composition of the liquid. Note that F is positive since £ is the
mass fraction of light constitutent. Within the mush, this relationship
can be written as

(114 o =plt+ & oy -1))
by taking the liquidus relationship
(1.15) T=T -T(-¢&)

into account, where the liquidus slope I’ is a positive constant. Note
that (8/I') — o is usually positive since §/(al") is typically much larger
than unity. Now, if we substitute equation (1.14) into (1.11), we get

w
(1.16) ,Y—(lﬂjgb—)Q =-Vp— pr(g - a)(T - Tr)gz.
Equations (1.8), (1.9), (1.10), (1.15), and (1.16) constitute a full set
of governing equations for the variables T, p, £, ¢ and w within the
mush. Three interfacial conditions that express conservation of mass,
energy and solute at both solid-mush and mush-liquid interfaces can be
derived directly by integrating equations (1.8), (1.9) and (1.10) over an
elementary volume enclosing (and collaping onto) each interface. These
can be expressed as

(1.17) [w-n]f =0,
(1.18) pr[—cpT + LT Vi, = [(—pc,T(0® + W) + p.Lpu® + kVT) - n] 7T,

(1.19) [(1 ~ $)E LV = [((1 - 9)éu’ — Do(1 - $)VE) - n]t,

where V,, is the normal velocity of the solid-mush or mush-liquid inter-
face, n is a unit vector normal to the interface and the square brackets
denote the jump in the enclosed quantity across the interface. Also,
we require that the pressure, temperature and liquid composition be
continuous at the mush-liquid interface, i.e.,

(1.20) plT=0, [T]T=0, [F=0.

Finally, we adopt a configuration of marginal thermodynamic equilib-
rium suggested by Worster ([14]), which is achieved if the temperature
gradient on the liquid side of the mush-liquid interface is equal to the
gradient of the local liquidus temperature. This is expressed by

(1.21) n-VT = -In- V¢,
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But, since we assume that the thermal conductivity is independent of
phases, the marginal equilibrium condition (1.21) is equivalent to

(1.22) ¢ =0,

on the mush-liquid interface (Worster, [14]).

Now, the boundary conditions to be applied to the mush-liquid inter-
face are (1.17) through (1.20) and (1.22). The boundary conditions on
the solid-liquid interface, consists of (1.17), (1.18), the second of (1.20)
and

(1.23) T =T,

where T, denotes the eutectic temperature. Note that if growth is not
eutectic, then the equation the second of (1.20) will be used instead of
(1.23). (Fowler [6]).

We nondimensionalize the governing equations and boundary condi-
tions by choosing a thermal length scale /U and thermal time scale
k/U?, where & is the thermal diffusivity x = k/ prcp. Specifically, put
x = (k/U)x*, w =UW*, p=kn/7p* ¥ =77, T - T, = (Tr = T.)T",
& —&oo = (€ — £x0)&™, where T, is the liquidus temperature of .
Dropping the asterisks, (1.8)~(1.10), (1.15) and (1.16) become

(1.24) Vw0,
(1.25) W.VE = % _ i;i@ _ Cg_j
(1.2 woor=vry Lg%
(1.27) T— ¢

(1.28) W¢§)(TW—-¢F +Vp+ R,Tz = 0.

The parameters are a Stefan number S = L/c,(T, —T¢), which represents
the ratio of the latent heat needed to melt the solid and the heat needed
to warm the solid from its eutectic temperature to the reference temper-
ature T, the ratio of composition C = &x /(& — €x0), Which denotes the
compositional contrast between solid and liquid phases compared to the
typical variations of concentration within the liquid (Worster ([15])), and
a Rayleigh number R, = v,p0,(8 — al')g(T, — T,)/VnI', which will act
to drive buoyancy induced convection in the mush if it is large enough.
Note that very large Lewis number Le = /D, is assumed in equation
(1.26). Boundary conditions are:
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(i) on the liquid-mush interface, z = h

¢ =0, [W‘z]i—zo, [p]i’: ) [f]tzo,
mt=0,  (Ot=0,  [Zr=o

(ii) on the solid-mush interface, 2 =0

w-z=0, T=-1, ¢£=1

2. Asymptotical solutions

In this section, we first determine boundary conditions on the mush
at the mush-liquid interface by using solutions in the liquid region which
are obtained from assuming that the liquid region overlying the mush
has uniform vertical motion. Then we assume in the mush that T', ¢ and
w depend on height z only and the thickness of the mush is constant.
We develop a simple set of equations for T', ¢ and w. Finally, we present
asymptotical solutions of the model in case of w << 1.

We assume that the liquid region overlying the mush has uniform
vertical motion. Then we obtain from equations (1.9) and (1.10)

(2.1) T=T+(Th — T;o)e—(z—ho)(l-l—wh)’
and
(2.2) £= ghe*Le(z—ho)(l'i-wh)’
where hg is the constant thickness of the mush,
Too — T,
Th=Tlho), & =&ho)  wn=wlho) T=F—r.

If we apply to (2.1) and (2.2) the marginal equilibrium condition in
the liquid (g—f)l = —(—g—ﬁ-)l, the liquidus relation T}, = —&p,, and [T]F =0
at 2z = hg, we obtain, to dominant order in powers of Le™!,

(2.3) T, =0, & =0.
We use (2.3) as boundary conditions when we find solutions of the mush.

We assume that the temperature T, the mass fraction of the solid ¢
and the vertical component of the velocity —w depend on z only. Then

we obtain from equations (1.24) ~ (1.27) the set of governing equations
and boundary conditions for a mush as follows.

(2.4) T'=(C+S-T)¢+H,
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where H = T"(hg) measures the amount of superheat.
Tl
T-C

(2.5) ¢ = (14+w-—9).

(2.6) w' = V(1-¢)7,

where V = w/(hg). Note that we use the permeability relation v(¢) =
(1 — ¢)? from Worster ([15]). The boundary conditions are

(2.7)  T(he) =0,  (hg)=0, T(O)=-1,  w(0)=0.

Note that we use the third condition in (2.7) to find the thickness hg
of the mush.

We assume that w << 1. Then from (2.5), we have

TI
(23) ¢ =—(1-9)
From (2.8) we obtain
T
(2.9) ¢= T_0O'

where the conditions 7, = 0 and ¢, = 0 were used. The solution
(2.9) for ¢ reveals that the solid fraction in the mush decreases when
the temperature increases, and shows that the ratio of composition C
affects the distribution of solid in the mush.

Let’s discuss physics of the expression of (2.9). Since T = —¢, we
rewrite (2.9) as

(2.10) Cop—(1—¢)E=0.

On the other hand, since we assume &° = 0, the scaled mass fraction ™
of light constitutent of the mush is from (1.1)

(2.11) " =—-Co+ (1-9).
From (2.10) and (2.11), we have
(2.12) £m =0,

Note that the scaled mass fraction of light component of the liquid is
zero from (2.2) and the second of (2.3). Therefore, (2.12) means that the
mass fraction of light component of the liquid and the mush are equal.
This denotes the fact that the mass of light constitutent of the liquid is
conserved through the mush when convection is absent.
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We next find an implicit expression for the temperature. If we sub-
stitute (2.9) into (2.4), we get
(2.13)
1. 1+4a+b 2C —a., a+2b+Vd—-T(2+a—d)

z=—In + In ,
2 ( 2vd ) a+2b—vVd—T(2+a+Vd)

T2 —aT +b

where a = C + S+ H, b= CH, d = a® — 4b. The depth of the mush is
obtained by setting z = hy, T = 0 in (2.13).

We present figure 2 to show how the solid fraction and the temper-
ature can vary with height. We see that C affects the distribution of
solid in the mush and thus the mobility of the interstitial fluid and the
nature of any flow that might take place.

When C' is large or moderate, the solid fraction is small throughout
the mush. (see the solid and dashed curves in figure 2). This suggests
that the permeability is large and its change is small with depth. This
situation, in particular, shown in the solid line of figure 2, is typical of the
ammonium-chloride experiments. When C is small, ¢ is large relatively
through much of the mush. This indicates that the permeability is small,
it is likely to be a strong function of depth and fluid flow may only
penetrate the upper portions of the mush. This case corresponds to the
Pb-10 wt%Sn experiment (Hellawell et al., [7]). (see the dotted curves
in figure 2).

We consider some asymptotic cases of (2.13), in order to understand
how the system depends on the three dimensionless parameters C, S
and H.

If C>>1o0r S <<1, then

H+1
2.14 =
(214) s=lni
so that
1
(2.15) ho = ln(l + -I:I“)

We see that the depth hg of the mush dominantly depends upon thermal
balances between conduction of heat through the mush and conduction
of heat from the liquid region in determining hg.

Welet Q=S or H. If Q>>1, then
Q41

In this case,

(2.17) ho — 0,
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the thickness of the mush is small due to the dominant influence of
conduction of heat from the liquid region or the dominant influence of
the latent heat released during solidification.

If C << 1, then

H+S5+1
2.1 —lp=—"c1>
(2.18) z=In T+ S5—7
therefore,
1
(2.19) ho =1In(1 + )

In this case, hg is determined by balancing conduction of heat through
the mush, conduction of heat from the liquid region, and the latent heat
released during solidification.

Lastly, we consider in case that heat transfer from the liquid region
is weak. We let H << 1. Then we have

C c+8S
In ,

Y C+s " CH

which indicates the effects of C' in determining hy. We see that increasing
C is equivalent to decreasing S and thus that varying C acts to modify
the amount of latent heat released.

(2.20) ho

3. Numerical solutions for a mush

In this section, we solve numerically the set of equations (2.4), (2.5)
and (2.6). Then we compare them with asymptotical solutions.

It is not easy that the numerical integration of the set of equations
(2.4), (2.5) and (2.6) satisfies two bottom boundary conditions at the
same time when we integrate from the top of the mush z = hy. We
therefore integrate first the following equations (3.1), (3.2) from 7' =0
to T'= —1, which can be obtained from (2.4), (2.5) and (2.6).

dp 1+w—¢
(3.1) T T-C
(3.2) dw V(L - ¢)°

dT ~ (C+S-T)p+H
with conditions

(3.3) $(0)=0, w(-1)=0.
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In our system, we have five parameters, i.e, wp = w(hg), V = w'(hg),
S, C, H = T'(hg). Both C and S are experimentally controllable pa-
rameters. Since it can be shown that H depends on wy, we actually
have two internal parameters. Given wy, the value of V is determined
numerically by stopping condition w(—1) = 0.

Then we next integrate equations (2.4), (2.5) and (2.6) numerically
with the values of parameter obtained from the above numerical solu-
tions. We obtain valid numerical solutions of T', ¢, and w if the third
and the fourth condition in (2.7) are satisfied at the same time. (see the
solid curves in figures 3 and 4).

As we see from figure 3 and 4, our numerical solutions (the solid
curves) consistent with the asymptotical solutions (the dashed curves)
in the qualitative sense. When C is large, the solid fraction ¢ is small
throughout the mush as we see from figure 3 corresponding to the am-
monium chloride experiments. This means, in case of the ammonium
chloride experiments, that the permeability is relatively large and the
variation of the permeability is small with depth. When C' is small, from
figure 4 corresponding to the Pb-10wt%Sn experiments, we see that ¢ is
comparatively large except the upper portions of the mush. This indi-
cates, for the metallic lead-tin alloy, that the permeability is likely to be
a strong function of depth and fluid flow hardly penetrates the bottom
parts of the mush.

4. Experiment and comments

The laboratory experiment is easy to perform and makes a simple
and attractive fluid-dynamical demonstration. A warm aqueous ammo-
nium chloride solution (for example, 28wt%NH4Cl) of composition more
concentrated than the eutectic value (20wt%) is placed in a suitable con-
tainer (a glass beaker will do) and cooled from below, for example by
placing the glass beaker on a bed of ice. After a short while the bot-
tom of the beaker is completely covered with small dendritic crystals of
ammonium chloride and the thickness of the layer gradually increases
with time. It appears that a planar solid-liquid interface is highly (mor-
phologically) unstable, and that the actual interface is a highly irregular
surface, which takes the form of small dendrite arms occupying a zone
of finite thickness, often called the mushy zone. The reason for this fact
is that a planar interface leads to ‘constitutional’ supercooling, where
the liquid ahead of the interface has a temperature below the liquidus,
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despite being above the interfacial temperature, because of the depen-
dence of the liquidus (freezing) temperature on solute concentration.
The common occurrence of dendritic or mushy zones is due to the fact
that compositional diffusivities are invariably much smaller than thermal
diffusivities, so that the thickness of the region over which the concen-
tration changes in the liquid is much thinner than the corresponding
region over which the temperature changes.

In the early stages, finger-like convection starts in the fluid region just
above the mush. With increased time, plumes with associated chimneys
are visible. During an extended period these coexist with the fingers.
The finger convection become progressively weaker and chimneys are
eventually the only sites of upwelling. Downward flow in the mush
causes solidification and upward flow promotes dissolution. The non-
linear interaction of dissolution and convection leads to the formation of
chimneys.

The NH4Cl solution above the mush remains continually undersatu-
rated. The circulation above the mush consists of upward flow in isolated
buoyant plumes which is compensated by a downward return flow of the
undersaturated solution. This liquid slowly migrates towards the layer
of crystals and flows down to it. Because the flow through the crys-
tals takes place in a decreasing temperature field, the aqueous solution
becomes saturated and NH4Cl exsolves onto existing NH4Cl crystals,
which exhibit secondary and tertiary branching. The NH,4Cl-depleted
solution from a wide area within the mush flows to a central point and
the less-dense return flow takes place through a few isolated chimneys.
The upward flow in the plume induces motion of the bulk fluid toward
the plume itself. The comparatively solute-rich fluid, meeting the cold
plume, tends to crystallize around the chimney. As a result, there is a
buildup of crystals around each chimney exit, like a mini-volcano. With
time some chimneys become inactive and the overall intensity of the con-
vective motion decreases as the thickness of the mushy layer increases.

As we see from experiment, a mush-chimney system has three compo-
nents: the main body of mush where downward vertical flow is dominant,
the chimney wall where the fluid flows into the chimney horizontally, and
the chimney where the fluid flows upward.

In this paper, we have found solutions in the asymptotical limit and
solved numerically for the main body of mush. The remaining work is
to analyze the chimney wall and the chimney by using our model. In the
distant future, we will work try to answer whether any of the family of
solutions found from the governing equations for the of mush are stable
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and whether, therefore, they correspond to experimentally observable

states.

Figure 1.— a close-up picture of the mush-chimney system. We see
that the mush generally consists of vertical or nearly vertical primary
dendrites with secondary and tertiary arms. It shows that the NH,Cl-
depleted fluid is sucked into the chimney and rises up into the melt due
to its own compositional buoyancy. It was taken from 28% NH,CIl-H,O
solution experiment two hours after the experiment started.

Figure 2.— The solid graphs show the temperature T and the solid
fraction ¢ in case of C' = 74/6. The dashed and dotted curves represent

T, ¢ when C = 5.0 and C = 0.2 respectively.
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Figure 3.— The solid graphs preseht T, ¢ and w as functions of z
when C = 74/6 and wy, = 1.0. The dashed curves are the solid graphs

in figure 2.

o
~

—

C.51

3.k

Figure 4.— The solid graphs present T, ¢ and w as functions of z
when C = 0.2 and wy, = 1.0. The dashed curves are the dotted graphs

in figure 2.
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