WEIGHTED BLOCH SPACES AND SOME OPERATORS INDUCED BY RADIAL DERIVATIVES

SI Ho KANG

ABSTRACT. In the setting of the half-plane of the complex plane, we show that for $r \geq 0$, the dual space of the weighted bergman spaces $B^{1,r}$ is the Bloch space of the half-plane and we study some bounded linear operators induced by radial derivatives.

1. Introduction

Let $H = \{x+iy: y>0\}$ be the half-plane and let $\mathbb{D} = \{z\in\mathbb{C}: |z|<1\}$ be the unit disk in the complex plane . For $1\leq p<\infty$ and $r\geq 0$, the (weighted) Bergman space $B^{p,r}(A^{p,r},resp.)$ of the half plane (disk,resp.) is the space of analytic functions in $L^p(H,dA_r)(L^p(\mathbb{D},dA_r),resp.)$, where dA denotes the usual two dimensional area measure and $dA_r(z)=(2r+1)K(z,z)^{-r}dA(z)((2r+1)K_{\mathbb{D}}(z,z)^{-r}dA(z),resp.)$. In this case, $K(\cdot,w)(K_{\mathbb{D}}(\cdot,w),resp.)$ is the reproducing kernel for $B^{2,r}(A^{2,0},resp.)$. In fact, $K(z,w)=-\frac{1}{\pi(z-\overline{w})^2}$ and $K_{\mathbb{D}}(z,w)=\frac{1}{\pi(1-z\overline{w})^2}$ (see [3], [5]).

Moreover, for $r \geq 0$, $K(\cdot, w)^{1+r}(K_{\mathbb{D}}(\cdot, w)^{1+r}, resp.)$ is the reproducing kernel for $B^{2,r}(A^{2,r}, resp.)$ (see [5]).

An analytic function f on $H(\mathbb{D}, resp.)$ is said to be in the (weighted) Bloch space $\mathcal{B}^r(i)(\mathcal{B}(\mathbb{D}), resp.)$ if $||f||_H = \sup_{z=x+iy\in H} y^{1+2r}|f'(z)| < \infty$ and

$$f(i) = 0(||f||_{\mathbb{D}} = \sup_{z \in \mathbb{D}} (1 - |z|^2)|f'(z)| < \infty, resp.$$
).

Received February 1, 2004.

²⁰⁰⁰ Mathematics Subject Classification: Primary 31B05, 31B10; Secondary 47B35.

Key words and phrases: dual space, weighted Bergman space, modified Bergman kernels, half-plane, radial derivatives, Möbius transform.

This work was partially supported by Sookmyung Women's University Research Grants 2003.

Then $\|\cdot\|_H$ and $\|\cdot\|_{\mathbb{D}}$ are seminorms. But $\mathcal{B}^r(i)(\mathcal{B}(\mathbb{D}), resp.)$ can be made into a Banach space by introducing the norm $\|f\|_{\mathcal{B}^r} = |f(i)| + \|f\|_H(\|f\|_{\mathcal{B}(\mathbb{D})}) = |f(0)| + \|f\|_{\mathbb{D}}, resp.)$

Let $\partial^{\infty} H = \partial H \bigcup {\infty}$ and let

$$\mathcal{B}^r_0(i) = \{f \in \mathcal{B}^r(i): \lim_{z \to \partial^\infty H} y^{1+2r} |f'(z)| = 0\},$$

where $z \to \partial^{\infty} H$ means $|z| \to \infty$ or $y \to 0$ where z = x + iy. Then $\mathcal{B}_0^r(i)$ is also a Banach space. Moreover, $\mathcal{B}^0(i)$ and $\mathcal{B}_0^0(i)$ are known to be the dual and predual, repectively, of $B^{1,0}$.

Section 2 is devoted to the relationship between $A^{1,r}$ and $B^{1,r}$, in fact, there is an isometry isomorphism from $B^{1,r}$ onto $A^{1,r}$. Moreover, we introduce weighted Bloch spaces which are Banach spaces. We note that the reproducing kernel for $B^{2,0}$ does not belong to $B^{1,0}$ and hence the projection P dose not map $L^{1,0}$ into $B^{1,0}$. We are going to define a projection from L^{∞} into $\mathcal{B}^{r}(i)$. To do so, we need a modified reproducing kernel which is in $L^{1,0}$. In Section3, we let \mathcal{R} denote the radial differentiation of $f \in C^1(H)$ defined by $\mathcal{R}f(z) = xD_1f(z) + yD_2f(z)$, where $z = x + iy \in H$ and $D_1(D_2, resp.)$ denotes the differentiation with respect to x(y, resp.). For t > 0 and f(z) = u(x, y) + iv(x, y), $\frac{d}{dt}f(tz) = xD_1f(tz) + yD_2f(tz) = \mathcal{R}f(tz)$ and hence $\mathcal{R}f = 0$ if and only if f is radially constant, that is, f(z) = f(tz) for all t > 0 and all $z \in H$. We show that for any $f \in B^{p,r}$ and any $\varphi \in Aut(H)$, $f \circ \varphi$ can be considered as the radial derivative of some element of $B^{p,r}$. We note that some Bloch functions do not have the vanishing property. In fact, we show that for any $f \in \mathcal{B}^r(i)$ and any $\varphi \in Aut(H), f \circ \varphi$ can be considered as a radial derivative of some element of $\mathcal{B}^r(i)$ if and only if f has the vanishing property along the ray. Moreover, we get some operators induced by radial derivatives which are bounded. Throughout this paper, we use the symbol $A \leq B$ for nonnegative constants A, B to indicate that A is dominated by B times some positive constant.

2. Weighted Bloch spaces

In this section, we construct several function spaces and we find the relationship between $\mathcal{B}(\mathbb{D})$ and $\mathcal{B}^0(i)$ and between $A^{1,r}$ and $B^{1,r}$ and hence we get the fact that for $r \geq 0$, the dual space of $B^{1,r}$ is $\mathcal{B}^0(i)$. To do so, we will show that $\mathcal{B}^r(i)$ is a Banach space. Take any z = x + iy in H and any f in $\mathcal{B}^r(i)$. Suppose f(z) = u(x,y) + iv(x,y). The mean

value theorem for several variables implies that

$$|f(z)| \leq |f(z) - f(i)| + |f(i)|$$

$$\leq |u(x,y) - u(0,1)| + |v(x,y) - v(0,1)| + |f(i)|$$

$$= |\nabla u(x_0, y_0)||z - i| + |\nabla v(x_1, y_1)||z - i| + |f(i)|$$
for some (x_0, y_0) and $(x_1, y_1) \in \mathbb{R}^2$

$$\leq 2|f'(z_0)||z - i| + 2|f'(z_1)||z - i| + |f(i)|$$

$$= 2(\operatorname{Im} z_0)^{1+2r}|f'(z_0)| \frac{|z - i|}{(\operatorname{Im} z_0)^{1+2r}}$$

$$+2(\operatorname{Im} z_1)^{1+2r}|f'(z_1)| \frac{|z - i|}{(\operatorname{Im} z_1)^{1+2r}} + |f(i)|$$

$$\leq 2||f||_{\mathcal{B}^r}|zi| \left(\frac{1}{(\operatorname{Im} z_0)^{1+2r}} + \frac{1}{(\operatorname{Im} z_1)^{1+2r}}\right).$$

If K is a compact subset of H then f is uniformly bounded on K and hence we have the following:

PROPOSITION 2.1. Each $\mathcal{B}^r(i)$ is a Banach space.

Let's show that $B^{1,r}$ can be identified with $A^{1,r}$. To do so, we introduce some function spaces. Let B^r denote the set $B^{1,r}$ with the norm $||f||_B = \int_H |f(z)|K(z,z)^{-r}dA$ and A^r the set $A^{1,r}$ with the norm $||f||_A = \int_{\mathbb{D}} |g(z)|K_{\mathbb{D}}(z,z)^{-r}dA(z)$. Clearly, $B^{1,r} \cong B^r$ via $f \mapsto \frac{1}{2r+1}f$ and $A^{1,r} \cong A^r$ via $f \mapsto \frac{1}{2r+1}f$. Then we have the following:

PROPOSITION 2.2. $B^r \cong A^r$ under the following function Ψ : for any $f \in B^r$, $\Psi(f)(w) = \frac{2^{2+4r}f(g(w))}{(1-w)^{4+4r}}$, where $g(w) = \frac{1+w}{1-w}i$.

Proof. Take any f in B^r . Let $g(z) = \frac{1+z}{1-z}i$, that is, g is a Riemann map from $\mathbb D$ onto H. Then $\Psi(f)$ is analytic on $\mathbb D$ and

$$\begin{split} &\|\Psi(f)\|_{A} \\ &= \int_{\mathbb{D}} |\frac{2^{2+4r} f(g(w))}{(1-w)^{4+4r}} |K_{\mathbb{D}}(w,w)^{-r} dA(w) \\ &= \int_{H} \frac{2^{2+4r} |f(g(g^{-1}(z)))|}{|1-g^{-1}(z)|^{4+4r}} K_{\mathbb{D}}(g^{-1}(z),g^{-1}(z))^{-r} |(g^{-1})'(z)|^{2} dA(z) \\ &= \int_{H} \frac{|z+i|^{4+4r}}{4} |f(z)| \frac{(-1)^{r} \pi^{r} (2\operatorname{Im} z)^{2r}}{|z+i|^{4r}} \frac{4}{|z+i|^{4}} dA(z) \\ &= \int_{H} |f(z)| K(z,z)^{-r} dA(z) = \|f\|_{B}. \text{ Hence } \Psi(f) \in A^{r}. \end{split}$$

That is, Ψ is well-defined and Ψ is an isometry. Clearly, Ψ is linear. Let's show that Ψ is onto. Take any h in A^r . We define $f(z)=\frac{(1-g^{-1}(z))^{4+4r}}{2^{2+4r}}h(g^{-1}(z))$ for all $z\in H$. Then f is analytic on H and

$$\begin{split} \|f\|_{B} &= \int_{H} |f(z)|K(z,z)^{-r}dA(z) \\ &= \int_{H} \frac{(1-g^{-1}(z))^{4+4r}}{2^{2+4r}} |h(g^{-1}(z))|K(z,z)^{-r}dA(z) \\ &= \int_{\mathbb{D}} \frac{|1-w|^{4+4r}}{2^{2+4r}} |h(w)|K(g(w),g(w))^{-r}|g'(w)|^{2}dA(w) \\ &= \int_{\mathbb{D}} |h(w)|(\pi(1-|w|^{2})^{2})^{r}dA(w) \\ &= \int_{\mathbb{D}} |h(w)|K_{\mathbb{D}}(w,w)^{-r}dA(w) = \|h\|_{A}. \end{split}$$

This implies that $f \in B^r$. Since

$$\Psi(f)(w) = \frac{2^{2+4r} f(g(w))}{(1-w)^{4+4r}} = \frac{2^{2+4r} \frac{(1-g^{-1}(g(w)))^{4+4r}}{2^{2+4r}} h(g^{-1}(g(w))) = h(w),$$

 Ψ is onto. Hence Ψ is an isometry isomorphism.

We note that $K(\cdot,w)=-\frac{1}{\pi(z-\overline{w})^2}$ is the reproducing kernel for $B^{2,0}$. But $K(\cdot,w)\notin B^{1,0}$ and P does not map $L^{1,0}$ into $B^{1,0}$. This implies that we need a modified reproducing kernel $M(\cdot,w)=K(\cdot,w)-K(\cdot,i)$. Then we can show that $M(\cdot,w)\in L^{1,0}$ and $f\mapsto \int_H f(z)\overline{M(z,w)}dA(z)$ is a bounded linear operator from L^∞ into $\mathcal{B}^0(i)$.

Theorem 2.3. We define $Q: L^{\infty} \to \mathcal{B}^r(i)$ by

$$Q(b)(z) = \int_{H} b(w) \overline{M^{1+r}(w, z)} dA(w)$$

for all $b \in L^{\infty}$. Then Q is a bounded linear operator.

Proof. Since $K(w,z) = -\frac{1}{\pi(w-\overline{z})^2}$ and $M^{1+r}(w,z) = K(w,z)^{1+r} - K(w,i)^{1+r}$ for $j \in \{1,2\}$,

$$D_{j}\overline{M^{1+r}(w,z)} = D_{j}\left(-\frac{1}{\pi(\overline{w}-z)^{2}}\right)^{1+r}$$

$$= \left(-\frac{1}{\pi}\right)^{1+r}D_{j}\left(-\frac{1}{(\overline{w}-z)^{2(1+r)}}\right)$$

$$= \left(-\frac{1}{\pi}\right)^{1+r}(-1)(2+2r)\frac{1}{(\overline{w}-z)^{3+2r}}.$$

Take any b in L^{∞} and any closed contour C in H. Then

$$\begin{split} \int_C Q(b)(z)dA(z) &= \int_C \int_H b(w)\overline{M^{1+r}(w,z)}dA(w)dA(z) \\ &= \int_H b(w)\int_C \overline{M^{1+r}(w,z)}dA(z)dA(w) \\ &= \int_H b(w)\cdot 0dA(w) = 0. \end{split}$$

By Morera's Theorem, Q(b) is analytic on H. Let z = x + iy and w = s + it be in H. Then for each $j \in \{1, 2\}$,

$$y^{1+2r}|D_{j}Q(b)(z)|$$

$$= y^{1+2r}|D_{j}\int_{H}b(w)\overline{M^{1+r}(w,z)}dA(w)|$$

$$\leq y^{1+2r}\frac{2+2r}{\pi^{1+r}}\int_{H}|b(w)|\frac{1}{|\overline{w}-z|^{3+2r}}dA(w)$$

$$\leq \frac{2+2r}{\pi^{1+r}}||b||_{\infty}y^{1+2r}\int_{H}\frac{1}{|\overline{w}-z|^{3+2r}}dA(w)$$

$$= \frac{2+2r}{\pi^{1+r}}||b||_{\infty}y^{1+2r}\int_{0}^{\infty}\int_{-\infty}^{\infty}\frac{1}{\{(s-x)^{2}+(t+y)^{2}\}^{\frac{3+2r}{2}}}dsdt$$

$$= \frac{2+2r}{\pi^{1+r}}||b||_{\infty}y^{1+2r}\int_{0}^{\infty}\int_{-\infty}^{\infty}\frac{t+y}{(s-x)^{2}+(t+y)^{2}}$$

$$\times \frac{1}{(t+y)\{(s-x)^{2}+(t+y)^{2}\}^{\frac{1+2r}{2}}}dsdt$$

$$\leq \frac{2+2r}{\pi^{r}}||b||_{\infty}y^{1+2r}\int_{0}^{\infty}\frac{1}{(t+y)^{2+2r}}dt$$

$$= \frac{2+2r}{(1+2r)\pi^{r}}||b||_{\infty}.$$

This implies that $Q(b) \in \mathcal{B}^r(i)$ and Q is bounded.

3. Some linear operators

We note that Aut(H) is the Möbius group of bi-analytic mappings of H. For each $\varphi \in Aut(H)$, there are real numbers a and b such that a>0 and $\varphi(z)=az+b$ for all $z\in H$ (see [2]). The Bergman kernel functions are intimately related to Aut(H) of the half-plane . Moreover, for each $f\in \mathcal{B}^r(i)$ and any $\varphi\in Aut(H)$, $\|f\|_H\approx \|f\circ\varphi\|_H$, that is, $\|f\|_H\lesssim \|f\circ\varphi\|_H$ and $\|f\|_H\gtrsim \|f\circ\varphi\|_H$.

LEMMA 3.1. (1) Suppose $1 \le p < \infty$ and $r \ge 0$. If $f \in B^{p,r}$ then f has the vanishing property along the ray, that is, $\lim_{t\to\infty} f(tz) = 0$ for all $z \in H$.

(2) Suppose $1 \le p < \infty$ and $r \ge 0$. If $f \in B^{p,r}$ and $\varphi \in Aut(H)$ then $f \circ \varphi \in B^{p,r}$.

Proof. (1) See [4].

(2) Since $\varphi \in Aut(H)$, $\varphi(z) = az + b$ for some a > 0 and $b \in \mathbb{R}$. Take any f in $B^{p,r}$. Then

$$\begin{split} &\|f\circ\varphi\|_{p,r}^p\\ &=\int_H |f\circ\varphi|^p dA_r\\ &=(2r+1)\int_H |f(\varphi(z))|^p K(z,z)^{-r} dA(z)\\ &=(2r+1)\int_H |f(w)|^p K(\varphi^{-1}(w),\varphi^{-1}(w))^{-r} |(\varphi^{-1})'(w)|^2 dA(w)\\ &=(2r+1)\int_H |f(w)|^p \Big(\frac{a^2}{\pi(2\mathrm{Im}w)^2}\Big)^{-r} \Big(\frac{1}{a}\Big)^2 dA(w)\\ &=a^{-2-2r}\int_H (2r+1)|f(w)|^p K(w,w)^{-r} dA(w)\\ &=a^{-2-2r}\|f\|_{p,r}^p \text{ and hence } f\circ\varphi\in B^{p,r}. \end{split}$$

The property of every element of $B^{p,r}$ in Lemma 3.1 implies that for $1 \leq p < \infty$ and $r \geq 0$, each element of $B^{p,r}$ can be represented as a radial derivative of some element of $B^{p,r}$.

THEOREM 3.2. Suppose $1 \leq p < \infty$ and $r \geq 0$. Then for each $f \in B^{p,r}$ and any $\varphi \in Aut(H)$, there is a unique $f \circ \varphi \in B^{p,r}$ such that $\mathcal{R}f \circ \varphi = f \circ \varphi$. Moreover, $f \longmapsto f \circ \varphi$ is bounded on $B^{p,r}$.

Proof. Suppose $\widetilde{Rf}\circ\varphi=\widetilde{Rg}\circ\varphi$. Since $\widetilde{R(f\circ\varphi-g\circ\varphi)}=0$, $\widetilde{f\circ\varphi-g}\circ\varphi$ is radially constant, that is, $(\widetilde{f\circ\varphi-g}\circ\varphi)(z)=(\widetilde{f\circ\varphi-g}\circ\varphi)(tz)$ for all t>0 and $z\in H$. Since $\widetilde{f\circ\varphi-g}\circ\varphi$ is in $B^{p,r}$, $(\widetilde{f\circ\varphi-g}\circ\varphi)(tz)\to 0$ as $t\to\infty$ and hence we get the uniqueness of $\widetilde{f\circ\varphi}$. Take any f in $B^{p,r}$ and any φ in Aut(H). Then $\varphi(z)=az+b$ for some a>0 and $b\in\mathbb{R}$. For each $z\in H$, we define $\widetilde{f}(z)=-\int_1^\infty \frac{f(tz)}{t}dt$. Since f has the vanishing property along the ray, \widetilde{f} is well-defined and analytic on H. Minkowski's integral inequality implies that

$$\begin{split} &\|\widetilde{f \circ \varphi}\|_{p,r} \\ &= \left(\int_{H} |\widetilde{f \circ \varphi}(z)|^{p} (2r+1) K(z,z)^{-r} dA(z) \right)^{\frac{1}{p}} \\ &\leq \left(\int_{H} \int_{1}^{\infty} \frac{|f(\varphi(tz))|^{p}}{t^{p}} dt (2r+1) K(z,z)^{-r} dA(z) \right)^{\frac{1}{p}} \\ &\leq \int_{1}^{\infty} \left(\int_{H} \frac{|f(\varphi(tz))|^{p}}{t^{p}} (2r+1) K(z,z)^{-r} dA(z) \right)^{\frac{1}{p}} dt \\ &= \int_{1}^{\infty} \frac{1}{t} \left(\int_{H} |f(w)|^{p} \frac{|(\varphi^{-1})'(w)|^{2}}{t^{2}} (2r+1) \right. \\ &\qquad \times K \left(\frac{\varphi^{-1}(w)}{t}, \frac{\varphi^{-1}(w)}{t} \right)^{-r} dA(w) \right)^{\frac{1}{p}} dt \\ &= \int_{1}^{\infty} \frac{1}{t} \left(\int_{H} |f(w)|^{p} \frac{1}{t^{2}} \frac{1}{a^{2}} (2r+1) \left(\frac{1}{\pi (2\mathrm{Im}w)^{2}} \right)^{r} (a^{2}t^{2})^{-r} dA(w) \right)^{\frac{1}{p}} dt \\ &= \|f\|_{p,r} \frac{1}{a^{\frac{2+2r}{p}}} \int_{1}^{\infty} t^{-(1+\frac{2+2r}{p})} dt. \end{split}$$

Since $1+\frac{2r+2}{p}>1$, $\int_{1}^{\infty}t^{-(1+\frac{2+2r}{p})}dt$ is finite and hence $\widetilde{f\circ\varphi}\in B^{p,r}$ and $f\mapsto \widetilde{f\circ\varphi}$ is bounded on $B^{p,r}$. We note that for $j\in\{1,2\}$,

$$D_{j}(\widetilde{f \circ \varphi})(z) = D_{j}\left(-\int_{1}^{\infty} \frac{f(\varphi(tz))}{t} dt\right)$$
$$= -\int_{1}^{\infty} \frac{1}{t} D_{j} f(\varphi(tz)) at dt = -\int_{1}^{\infty} a D_{j} f(\varphi(tz)) dt$$

and
$$\frac{d(f(\varphi(tz)))}{dt} = \frac{d(f(atz+b))}{dt} = D_1 f(\varphi(tz)) ax + D_2 f(\varphi(tz)) ay = a(xD_1 f(\varphi(tz)) + yD_2 f(\varphi(tz)))$$
, where $z = x + iy$ and hence $\widehat{\mathcal{R}f \circ \varphi}(z) = xD_1 \widehat{f \circ \varphi}(z) + yD_2 \widehat{f \circ \varphi}(z) = -\int_1^\infty a(xD_1 f(\varphi(tz)) + yD_2 f(\varphi(tz))) dt = -\int_1^\infty \frac{d(f(\varphi(tz)))}{dt} dt = f(\varphi(z))$ because $f \circ \varphi$ has the vanishing property along the ray.

EXAMPLE 3.3. We note that

$$\mathcal{B}_0^r(i) = \{ f \in \mathcal{B}^r(i) : \lim_{z \to \partial^\infty H} y^{1+2r} | f'(z) | = 0 \}$$

and $M(z,w)^{1+r} = K(z,w)^{1+r} - K(z,i)^{1+r}$ is a modified reproducing kernel. Then $M(z,w)^{1+r} = \frac{(-1)^{1+r}}{\pi^{1+r}} \left(\frac{1}{(z-\overline{w})^{2+2r}} - \frac{1}{(z+i)^{2+2r}} \right)$. Put z = x + iy and w = s + it. Since

$$\frac{d}{dz}M(z,w)^{1+r} = \frac{(-1)^{1+r}(-2-2r)}{\pi^{1+r}}\left\{\frac{1}{(z-\overline{w})^{3+2r}} - \frac{1}{(z+i)^{3+2r}}\right\},\,$$

$$y^{1+2r} \left| \frac{d}{dz} M(z,w)^{1+r} \right| \leq \frac{2+2r}{\pi^{1+2r}} \left(\frac{1}{|z-\overline{w}|^2} + \frac{1}{|z+i|^2} \right) \leq \frac{2+2r}{\pi^{1+2r}} (\frac{1}{t^2} + 1).$$

Since $\lim_{z\to\partial\infty} y^{1+2r} | \frac{d}{dz} M(z,w)^{1+r} | = 0$, $M(z,w)^{1+r}$ belongs to $\mathcal{B}_0^r(i)$. Suppose that there is f in $\mathcal{B}_0^r(i)$ such that $M(z,w)^{1+r} = xD_1f(z) + yD_2f(z) = \mathcal{R}f(z)$. Consider $z = \frac{1}{n}i$. Then $\lim_{n\to\infty} \frac{1}{n}i = 0$ and $\lim_{n\to\infty} M(z,w)^{1+r} = \frac{(-1)^{1+r}}{\pi^{1+r}} (\frac{1}{\overline{w}^{2+2r}} - \frac{1}{i^{2+2r}})$. This contradicts to the fact that $\lim_{n\to\infty} (\frac{1}{n})^{1+2r}D_2f(z) = 0$ and hence Theorem 3.2 does not hold on $\mathcal{B}_0^r(i)$.

Every element of $\mathcal{B}_0^r(i)$ is a special element of $\mathcal{B}^r(i)$ which is related with some limit but Theorem 3.2 does not hold on $\mathcal{B}_0^r(i)$ and hence we consider a radial derivative of each element of $\mathcal{B}^r(i)$.

THEOREM 3.4. Suppose that $r > 0, \varphi \in Aut(H)$, and $f \in \mathcal{B}^r(i)$. Then there is a unique $\widehat{f \circ \varphi} \in \mathcal{B}^r(i)$ such that $\mathcal{R}\widehat{f \circ \varphi} = f \circ \varphi$ if and only if $\lim_{t\to\infty} f(tz) = 0$ for all $z \in H$, that is, f has the vanishing property along the ray. Moreover, $f \longmapsto \widehat{f \circ \varphi}$ is bounded.

Proof. We note that there are real numbers a and b such that a > 0 and $\varphi(z) = az + b$ for all $z \in H$. Take any f in $\mathcal{B}^r(i)$. Since

$$|\frac{d}{dt}f(\varphi(z))| = a|f'(az+b)|, ||f \circ \varphi||_{H} = \sup_{z=x+iy\in H} y^{1+2r} |\frac{d}{dz}f(\varphi(z))|$$
$$= \frac{1}{a^{2r}} \sup_{z=x+iy\in H} (ay)^{1+2r} |f'(az+b)| = \frac{1}{a^{2r}} ||f||_{H}$$

and hence $f \circ \varphi \in \mathcal{B}^r(i)$. Let $\widehat{f \circ \varphi}(z) = -\int_1^\infty \frac{f(\varphi(tz)) - f(\varphi(ti))}{t} dt$ and let z = x + iy. Since

$$\widehat{D_j f \circ \varphi}(z) = - \int_1^\infty \frac{D_j f(atz+b)}{t} atdt,$$

$$|y^{1+2r}D_{j}\widehat{f \circ \varphi}(z)| \leq y^{1+2r}a \int_{1}^{\infty} |D_{j}f(atz+b)|dt$$

$$= \int_{1}^{\infty} (aty)^{1+2r} \frac{1}{a^{2r}} \frac{1}{t^{1+2r}} |D_{j}f(atz+b)|dt$$

$$\leq \frac{\|f\|_{H}}{a^{2r}} \int_{1}^{\infty} \frac{1}{t^{1+2r}} dt.$$

Since r > 0, $\widehat{f \circ \varphi} \in \mathcal{B}^r(i)$. Since $\lim_{t \to \infty} f(\varphi(tz)) = 0$, $\widehat{f \circ \varphi}$ is unique and

$$\widehat{\mathcal{R}f \circ \varphi} = xD_1 \widehat{f \circ \varphi}(z) + yD_2 \widehat{f \circ \varphi}(z)$$

$$= -\int_1^\infty (axD_1 f(\varphi(tz)) + ayD_2 f(\varphi(tz))) dt$$

$$= -\int_1^\infty \frac{df \circ \varphi}{dt}(tz) dt = f \circ \varphi(z).$$

Conversely, we note that $\widehat{\mathcal{R}f\circ\varphi}(z)=-\int_1^\infty \frac{df\circ\varphi}{dt}(tz)dt=f\circ\varphi(z)-\lim_{s\to\infty}f\circ\varphi(sz)=f\circ\varphi(z)$ and $\widehat{\mathcal{R}f\circ\varphi}(z)=f\circ\varphi(z)$ for all $z\in H$ and hence $\lim_{s\to\infty}f\circ\varphi(sz)=0$. By the above observation, $\|\widehat{f\circ\varphi}\|_H\lesssim \|f\|_H$. Thus $f\mapsto \widehat{f\circ\varphi}$ is bounded.

COROLLARY 3.5. (See [4]) (1) Suppose $1 \leq p < \infty$ and $r \geq 0$. Then for each $f \in B^{p,r}$, there is a unique $\tilde{f} \in B^{p,r}$ such that $f = \mathcal{R}\tilde{f}$. Moreover, $f \mapsto \tilde{f}$ is bounded on $B^{p,r}$.

(2) For r > 0 and $f \in \mathcal{B}^r(i)$, there is a unique $\widehat{f} \in \mathcal{B}^r(i)$ such that $\mathcal{R}\widetilde{f} = f$ and only if $\lim_{t \to \infty} f(tz) = 0$ for all $z \in H$, that is, f has vanishing property along the ray. Moreover, $f \longmapsto \widehat{f}$ is bounded.

Proof. It is immediate from the fact that $\varphi(z) = z$ is in Aut(H).

Theorem 3.2 says that each element of $B^{p,r}$ can be considered as the radial derivative of some element of $B^{p,r}$. We do not quarantee this fact on $\mathcal{B}^r(i)$.

PROPOSITION 3.6. There is a function $f \in \mathcal{B}^r(i)$ such that $f \neq \mathcal{R}g$ for all $g \in \mathcal{B}^r(i)$.

Proof. Fix $w \in H$ and we consider a modified reproducing kernel $M(z,w)^{1+r} = K(z,w)^{1+r} - K(z,i)^{1+r}$. Example 3.3 implies that $M(\cdot,w)^{1+r} \in \mathcal{B}_0^r(i)$. Suppose that there is $g \in \mathcal{B}^r(i)$ such that $\mathcal{R}g = M(\cdot,w)^{1+r}$. Then $(\frac{-1}{\pi})^{1+r} \left(\frac{1}{(z-\overline{w})^{2+2r}} - \frac{1}{(z+i)^{2+2r}}\right) = M(z,w)^{1+r} = xD_1g(z) + yD_2g(z)$, where z = x + iy. Put $z = \frac{1}{n}$. Since

$$\lim_{n \to \infty} \frac{1}{n} D_1 g(\frac{1}{n}) = 0,$$

$$\lim_{n \to \infty} (\frac{-1}{\pi})^{1+r} \left(\frac{1}{(\frac{1}{n} - \overline{w})^{2+2r}} - \frac{1}{(\frac{1}{n} + i)^{2+2r}} \right)$$

$$= (\frac{-1}{\pi})^{1+r} \left(\frac{1}{(\overline{w})^{2+2r}} - \frac{1}{(-1)^{1+r}} \right) = 0$$

which is a contradiction. This completes the proof.

THEOREM 3.7. Suppose that $r>0, f\in L^\infty$, and we define $Q:L^\infty\to\mathcal{B}^r(i)$ by $Q(b)(z)=\int_H b(w)\overline{M(w,z)^{1+r}}dA(w)$ for all $b\in L^\infty$. Then there is a unique element $\overline{f}\in\mathcal{B}^r(i)$ such that $\mathcal{R}\overline{f}=Qf$ if and only if $\lim_{t\to\infty}Qf(tz)=0$ for all $z\in H$, that is, Qf has the vanishing property along the ray. Moreover, $f\mapsto \overline{f}$ is bounded.

Proof. Take any f in L^{∞} . By Theorem 2.4, $Q(f) \in \mathcal{B}^{r}(i)$. Theorem 3.4 implies that there is a unique $\overline{f} \in \mathcal{B}^{r}(i)$ such that $\mathcal{R}\overline{f} = Qf$ and hence $\|\overline{f}\|_{\mathcal{B}^{r}} \lesssim \|Qf\|_{\mathcal{B}^{r}}$. Since Q is bounded, $\|\overline{f}\|_{\mathcal{B}^{r}} \lesssim \|f\|_{\infty}$. Thus $f \mapsto \overline{f}$ is bounded.

References

- [1] B. R. Choe, H. Koo, and H. Yi, Harmonic Bergman functions as radial derivatives of Bergman functions, Proc. Amer. Math. Soc. 131 (2003), No. 2, 401-408.
- [2] S. G. Gindkin, Analysis in homogeneous domains, Uspehi Mat. Nauk 19 (1964), no. 4, 3-92.
- [3] H. Hedenmalm, B. Korenblum, and K. Zhu, Theory of Bergman spaces, Springer-Verlag, New York, 2000.
- [4] S. H. Kang and J. Y. Kim, The radial derivatives on weighted Bergman spaces, Commun. Korean Math. Soc. 18 (2003), no. 2, 243-249.
- [5] J. Y. Kim, Weighted analytic Bergman spaces of the half plane and their Toeplitz operators, Ph. D. Thesis, Sookmyung Women's University, 2001.

DEPARTMENT OF MATHEMATICS, SOOKMYUNG WOMEN'S UNIVERSITY, SEOUL 140-742, KOREA

E-mail: shkang@sookmyung.ac.kr