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INVERTIBLE INTERPOLATION PROBLEMS IN ALG/(
YouNG Soo Jo

ABSTRACT. In this article, we investigate invertible interpolation
problems in Algl : Let £ be a subspace lattice on a Hilbert space
H and let X and Y be operators acting on H. When does there
exist an invertible operator A in AlgL such that AX =Y?

1. Introduction

In this paper we are concerned with an interpolation problem in AlgL.
Given operators X and Y acting on a Hilbert space, when is there an
invertible operator A in AlgC (usually satisfying some other conditions)
such that AX =Y 7 The “other conditions” that have been of interest
to us involve restricting A to lie in the algebra associated with a sub-
space lattice. Lance (7] initiated the discussion by considering a nest N’
and asking what conditions on z and y will guarantee the existence of
an operator A in AlgN such that Az = y. Hopenwasser [3] extended
Lance’s result to the case where the nest NV is replaced by an arbitrary
commutative subspace lattice £; the conditions in both cases read the
same. Munch [8] considered the problem of finding a Hilbert-Schmit op-
erator A in AlgA that maps z to y, whereupon Hopenwasser [4] again
extended to Algl. Anoussis, Katsoulis, Moore, and Trent [1] studied
the problem of finding A so that Az = y and A is required to lie in
certain ideals contained in AlgL (for a nest ).

Roughly speaking, when an operator maps one thing to another, we
think of the operator as the interpolating operator and the equation
representing the mapping as the interpolation equation. The equations
Axr =y and AX =Y are indistinguishable if spoken aloud, but we mean
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the change to capital letters to indicate that we intend to look at fixed
operators X and Y, and ask under what conditions there will exist an
operator A satisfying the equation AX =Y. Let z and y be vectors in
a Hilbert space. Then < z,y > means the inner product of vectors z
and y. Note that the “vector interpolation” problem is a special case of
the “operator interpolation” problem. Indeed, if we denote by z ® u the
rank-one operator defined by the equation z ® u(w) =< w,u > z, and
if weset X =2®u, and Y = y ® u, then the equations AX =Y and
Ax = y represent the same restriction on A.

The simplest case of the operator interpolation problem relaxes all
restrictions on A, requiring it simply to be a bounded operator. In
this case, the existence of A is nicely characterized by the well-known
factorization theorem of Douglas :

THEOREM D [2]. Let Y and X be bounded operators on a Hilbert
space ‘H. The following statements are equivalent:

(1) rangeY ™ C rangeX*;

(2) Y*Y < M2X*X for some \ > 0;

(3) there exists a bounded operator A on H so that AX =Y.
Moreover, if (1), (2), and (3) are valid, then there exists a unique oper-
ator A so that

(a) A% = inf{p: YV < pX*X};

(b) ker(Y*] = ker[A*]; and

(¢) range[A*] C range[X]~.

We establish some notations and conventions. A (commutative) sub-
space lattice L is a strongly closed lattice of (commutative) projections
acting on a Hilbert space H. We assume that the projections 0 and I lie
in £. We usually identify projections and their ranges, so that it makes
sense to speak of an operator as leaving a projection invariant. If £ is
a subspace lattice on a Hilbert space H, then Algl is the algebra of all
bounded linear operators on H that leave invariant all the projections
in L.

2. Results

Let H be a Hilbert space and £ be a subspace lattice of orthogonal
projections acting on H containing 0 and I. Let M be a subset of a
Hilbert space H. Then M means the closure of M. Let N be the set of
all natural numbers and let C be the set of all complex numbers. In this
paper, we use the convention % = 0, when necessary.
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THEOREM 1. Let L be a subspace lattice on a Hilbert space H. Let
X and Y be operators acting on H. Assume that rangeX and rangeY
are dense in ‘H. Then the following are equivalent.

(1) There is an operator A in AlgL such that AX =Y, A is invertible
and every E in L reduces A.

13 EY fill , .
(2) sup{”E?ﬂEini“ :ne€N,E; € L and f, € Hp < 0o and
T EXf;
sup{%:neN,EieﬁandfiGH}<oo.
i=1 L1 7

Proof. If we assume that the conditions (2) holds, then there are
operators A and B in Algl such that AX =Y, X = BY and every E
in £ reduces A and B by Theorem 1[5]. Since rangeX and rangeY are
dense in H, BA =1 and AB = I. Hence A is invertible.

Conversely, by Theorem 1 [5],

120 EY fill

SUpS —=————-—RENE;ec L and f; € H )} < 0.
{ | Ei:l EzszH '

Since AE = EA, EA=' = A7'FE for every E in £. Hence A~! is an

operator in AlgL. Since AX =Y, X =A7'Y. So A~'(3° EYf) =

St EXfi,neNE; € L and f; € H. Thus

I EBXFl < AT EY fil.
i=1 i=1

|3 EX )l
1>, EY fill

nEN,EiGLandfiEH}<oo. O

< |A7Y < oo. Hence

If |Y EYfi|l # 0, then
i=1
sup { | S EX Ol
1200 BiY fil]

If we modify a little bit the proof of Theorem 1, we can get the
following theorems. So we will omit the proof of the following theorem
except that AE = EA for every F in L.

Let

My = {ZEini:neN,Eieﬁand f,»eH} and

i=1

My = {ZEszlTLEN,EZ € L and szH}

i=1
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THEOREM 2. Let H be a Hilbert space and let £ be a commutative
subspace lattice on H. Let X and Y be operators acting on 'H such
that My and M; are dense in H. Then the following statements are
equivalent.

(1) There is an operator A in AlgC such that AX =Y, A is invertible
and every E in L reduces A.

I EY Al

@ s { [ R

| > iy B X il
sup{ ==l " <2 .
{ I 3oy EsY fill

nEN,EiEEandfiE’H}<ooand
nEN,EiEEandfieH}<oo

Proof. (2) = (1). Let E,E; € £ and f; € H. Then

ZE Xf) = ZEEXfZ

= Z EE,Yfz and

i=1

EA(Y_EXf)=E(Q_EY/)
i=1 i=1

= zn:EE,.Yf,-.

i=1
Since My is dense in H, every E in L reduces A. O
THEOREM 3. Let H be a Hilbert space and let L be a subspace
lattice on H. Let {X1,Xo, - ,Xn} and {Y1,Ys, - ,Y,} be operators
acting on ‘H. If there is an operator A in AlgL such that AX; = Y;
(j =1,2,---,n), A is invertible and every E in L reduces A, then
sup { |52 Sy BrVfual
” Zkzzl i=1 Ek,iXifk,i“

m; €EN,I < n,Er,; € Land fi; EH} < oo

and

{”Z El 1Ek1X sz”
sup ;
I ey BrYafu,ll

m; EN,I<n,Ep; € L and fi; G'H} < 0o



Invertible interpolation problems in Algl 323

Proof. Since A is an operator in Algl, Y; = AX;(j = 1,2,---,n)
and AF = FEA for every F in L,

sup { |0 iy BrYifiodl |
m; I :
HZk:lZi:l Ek,iXifk,iH
by Theorem 3[5]. Since Y; = AX; and A is invertible, X; = A7'Y;(j =
1,2,---,n). Since AE = EA, A”'E = EA~! for every E in £, A™! is
an operator in AlgL. Hence
{”E:Zl 1 EriXifel :
I o0y 3251 BriYifill

miEN,lf’n,Ek’iE,C and fk,iEH}<OO

m; €Nl <n, By € L and fr E'H} < 0.

O

THEOREM 4. Let H be a Hilbert space and let L be a subspace lattice
on H. Let {X1,X5,---,Xn} and {Y1,Y2,-++,Y,} be operators acting
on ‘H. Assume that the rangeX; and the rangeYy are dense in ‘H for
some k. If

Sup{ I ey by BraYilll
IS, oL B Xifell

m; €ENJI<n,Er; € Land fr; E’H} < 00

and

sup ey é:lEk,iXifk,i”.
3ok Xiey By Yifuyill

then there is an operator A in AlgL such that AX; =Y;(j = 1,2,---,
n), A is invertible and every E in L reduces A.

Proof. By Theorem 4[5], there are operators A and B in AlgL such
that Y; = AXj and X; = BY; (j = 1,2,--- ,n) and every E in L
reduces A and B. Since the rangeX; and the rangeY} are dense in H,
Yk = AXk = ABY]c and Xk = BY]c = BAXk. So AB =1 = BA. Hence
A is invertible, g

m; €ENJI<n,E; € Land fr; G'H} < 00,

m; l
Ny = {ZZEk’iXifk,i :m; ENJI<n,Eg; €L and fr; € 'H} and
k=1

S |
Nl = { ZEk,ink,i 1m; EN,lgn,Ek,iEEand fk-,i EH}
k=11
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THEOREM 5. Let £ be a commutative subspace lattice on a Hilbert
space H. Let X1, X2, -+ ,X,, and Y1,Ya,--- Y, be operators acting on
‘H. Assume that Ny and N are dense in H. If

{ ” Z;gnzzl é=1 Ek,iyifk,i”
sup e 7
132521 20im1 Bk, X fiesill

:<n, mieN, Ey, ;€ L and fk,ie’H}<oo

and
{ I opey Sim BreyiXifr il
sup P, 1
12252y et EryiYifu,ill
then there is an operator A in Algl such that Y; = AX;(j =1,2,--,
n), A is invertible and every E in L reduces A.

Proof. By Theorem 5[5], there are operators A and B in AlgL such
that Y; = AXj, X; = BY; (j = 1,2,--- ,n) and every E in L reduces
A and B. Since Ny and N; are dense in H, AB = I = BA. Hence A is
invertible. O

l<n,m; EN,E ; € L and fkviE'H} < 00,

With the similar proof of Theorem 5, we can get the following theo-
rem. So we omit its proof.

THEOREM 6. Let H be a Hilbert space and let L be a commutative
subspace lattice on H. Let {X,,} and {Y,,} be two infinite sequences of
operators acting on ‘H. Assume that

Ko = {ZZEk,z'Yifk,i :mi,l €N, Ey; € L and fi; € 'H}

k=1 i=1
and

m; |
K:l = {ZZEk’iXifk’i : mi,l S N, Ek,i c L and fk,z‘ c H}

k=1 i=1
are dense in H. If
cup { 125 B BeaYidiall
| iy iy Be,i X il

mi, L EN,Ek,i € L and fk,z' GH} < oo

and

m; l
v iz Bri XSk
wup {uzkzlzml i Xifiill

m; l .
12 ka 2 i1 B Y el
then there is an operator A in Algl such that AX,, =Y, A is invertible
and AE=FEA for every E in £ and alln=1,2,---.

We omit the proof of the following theorem because it can be easily
proved.

m;, lEN, Ek,ie L and f}mEH}< 00,
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THEOREM 7. Let ‘H be a Hilbert space and let L be a subspace
lattice on H. Let {X,} and {Y,,} be two infinite sequences of operators
acting on H. If there is an operator A in Algl such that AX, =Y,
(n=1,2,---), A is invertible and every E in L reduces A, then

m; l
s {HEHEM ki Yifiill |

= :m;, lEN, Ey ;€ L and fk,ieH}<oo
“ Zk:ll Zi:l EkzXszz”

and

cup { 125 Sics B Xifill
Iy Yimy Bei Vil

m;,l EN,E ; € L and fi; € 'H} < oo.

If we modify a little bit the proofs of Theorems 4 and 7, we can get
the following theorem. So we omit its proof.

THEOREM 8. Let 'H be a Hilbert space and let L be a subspace lattice
on H. Let {X,} and {Y,,} be two infinite sequences of operators acting
on 'H. Assume that the rangeX, and the rangeY| are dense in H. Then
the following are equivalent.

(1) There is an operator A in Algl such that AX, =Y, for all
n=1,2,---, A is invertible and every E in L reduces A.

(2)

ms 1

S B Yifes

sup{ “ fofl 211:1 ki Yifiill :my, €N, Ex ;€L and fk,iE'H} <0
12 k21 2 imt Bri X frill

and

sup { ” 2?211 2:1 Ek,iXifk,i“ X
o, S B feill

m;,l €N, Eg ; € L and fi; € 'H} < 0.
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