STABILITY OF A CUBIC FUNCTIONAL EQUATION ON GROUPS

KYOO-HONG PARK AND YONG-SOO JUNG

ABSTRACT. In this note we will find out the general solution and investigate the generalized Hyers-Ulam-Rassias stability for the cubic functional equation f(3x+y)+f(3x-y)=3f(x+y)+3f(x-y)+48f(x) on abelian groups.

1. Introduction

In 1940, S. M. Ulam [15] raised the following question concerning the stability of group homomorphisms: *Under what condition does there is an additive mapping near an approximately additive mapping between a group and a metric group*?

In next year, D. H. Hyers [7] answers the problem of Ulam under the assumption that the groups are Banach spaces. A generalized version of the theorem of Hyers for approximately linear mappings was given by Th. M. Rassias [13]. Since then, the stability problems of various functional equation have been extensively investigated by a number of authors (for example, [2, 3, 6, 8, 11, 14]). In particular, one of the important functional equations studied is the following functional equation:

$$(1.1) f(x+y) + f(x-y) = 2f(x) + 2f(y).$$

The quadratic function $f(x) = ax^2$ is a solution of this functional equation, and so one usually is said the above functional equation to be quadratic [1, 4, 10, 12].

Quadratic functional equation was used to characterize inner product spaces [1, 5, 9]. A square norm on an inner product space satisfies the important parallelogram law

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2).$$

Received January 10, 2003.

²⁰⁰⁰ Mathematics Subject Classification: 39B72, 39B52.

Key words and phrases: stability, additive function, cubic function, quadratic function.

It is well known that a function f between real vector spaces X and Y is quadratic if and only if there exists a unique symmetric bi-additive function $B: X \times X \to Y$ such that f(x) = B(x, x) for all $x \in X$ (see [1, 12]), where the function B is given by

(1.2)
$$B(x,y) = \frac{1}{4}(f(x+y) - f(x-y)) \text{ for all } x, y \in X.$$

The Hyers-Ulam stability problem for the quadratic functional equation (1.1) was first proved by F. Skof [14] for functions $f: X \to Y$, where X is a normed space and Y a Banach space. On the other hand, P. W. Cholewa [3] demonstrated that the theorem of Skof is still valid if X is replaced by an abelian group. In [4], S. Czerwik generalized the stability in the sense of Hyers and Ulam for the quadratic functional equation (1.1).

Now, let us introduce the following functional equation

$$(1.3) f(3x+y) + f(3x-y) = 3f(x+y) + 3f(x-y) + 48f(x).$$

It is easy to see that the cubic function $f(x) = cx^3$ is a solution of the above functional equation. So, in this note, we promise that the equation (1.3) is called a cubic functional equation and every solution of the cubic functional equation (1.3) is said to be a cubic function. Here our purpose is to establish the general solution and to examine the generalized Hyers-Ulam-Rassias stability problem [6] for the equation (1.3) on abelian groups. Throughout this note, we will denote by (G, +) an abelian group.

2. Solutions of Eq. (1.3)

In this section, let X be a real vector space. We precede the proof of our main theorem by two trivial lemmas.

LEMMA 2.1. A function $f: G \to X$ satisfies the functional equation

(2.1)
$$f(x+2y) + f(x-2y) = 2f(x) + 8f(y)$$

for all $x, y \in G$ if and only if f is quadratic.

Proof. (Necessity). Let x = 0 = y in (2.1). Then we have f(0) = 0. Putting x = 0 in (2.1) gives

(2.2)
$$f(2y) + f(-2y) = 8f(y),$$

and setting y = -y in (2.2), we obtain

(2.3)
$$f(-2y) + f(2y) = 8f(-y),$$

and so, by (2.2) and (2.3), we get f(-y) = f(y), i.e., f is an even function.

Hence from (2.2) or (2.3) it follows that

$$(2.4) f(2y) = 4f(y).$$

Substituting x = 2x in (2.1), it follows from (2.4) that f is quadratic. (Sufficiency). Putting x = 0 = y in (1.1) yields f(0) = 0. Replacing y by x in (1.1), we get f(2x) = 4f(x). Therefore, the substitution y = 2y in (1.1) now gives the equation (2.1).

LEMMA 2.2. A function $f: G \to X$ satisfies the functional equation

$$(2.5) f(x+2y) + f(x-2y) = 2f(x), f(0) = 0$$

for all $x, y \in G$ if and only if f is additive.

Proof. (Necessity). Replacing x by 2y in (2.5), we get

$$(2.6) f(4y) = 2f(2y).$$

Putting x = 2x in (2.5) and taking account of (2.6), we obtain

$$(2.7) f(2x+2y) + f(2x-2y) = f(4x).$$

From the substitutions u := 2x + 2y and v := 2x - 2y in (2.7), it follows that

$$f(u+v) = f(u) + f(v),$$

which means that f is additive.

(Sufficiency). In the additive equation f(x+y) = f(x) + f(y), by letting y = x and then putting x = x + 2y, y = x - 2y, respectively, it is easy to see that f satisfies the equation (2.5).

Our main result which presents the general solution of the equation (1.3) is

THEOREM 2.3. A function $f: G \to X$ satisfies the functional equation (1.3) if and only if there exists a function $F: G \times G \to X$ such that f(x) = F(x,x) for all $x \in G$, and for fixed $y \in G$, the function $A: G \to X$ defined by A(x) = F(x,y) for all $x \in G$ is additive and for fixed $x \in G$, the function $Q: G \to X$ defined by Q(y) = F(x,y) for all $y \in G$ is quadratic.

Proof. (Necessity). Set x = 0 = y in (1.3). Then we get f(0) = 0. Putting x = 0 in (1.3) gives f(-y) = -f(y). By letting y = 0 in (1.3), we have

$$(2.8) f(3x) = 27f(x).$$

Putting y = x in (1.3), we get

$$(2.9) f(4x) = 2f(2x) + 48f(x).$$

Replacing y by 3x in (1.3) and using (2.8), we obtain

$$(2.10) 10f(2x) = f(4x) + 16f(x),$$

which, by (2.9), yields

$$(2.11) f(2x) = 8f(x).$$

Replacing x and y by x + y and x - y in (1.3), respectively, we have

$$f(4x + 2y) + f(2x + 4y) = 3f(2x) + 3f(2y) + 48f(x + y),$$

which, in view of (2.11), reduces to

$$(2.12) f(2x+y) + f(x+2y) = 3f(x) + 3f(y) + 6f(x+y).$$

Putting x = x + 3y and y = x - 3y in (2.12) and then using (2.8) and (2.11), we have

$$(2.13) 9f(x+y) + 9f(x-y) = f(x+3y) + f(x-3y) + 16f(x).$$

Let us interchange x with y in (2.13). Then we get the relation

$$(2.14) 9f(x+y) - 9f(x-y) = f(3x+y) - f(3x-y) + 16f(y).$$

Then, by adding (2.12) to (2.13), we lead to (2.15)

$$18f(x+y) = f(x+3y) + f(x-3y) + f(3x+y) - f(3x-y) + 16f(x) + 16f(y).$$

On the other hand, if we interchange x with y in (1.3), we get

$$(2.16) f(x+3y) - f(x-3y) = 3f(x+y) - 3f(x-y) + 48f(y).$$

Hence, according to (1.3) and (2.16), we obtain (2.17)

$$6f(x+y) = f(3x+y) + f(3x-y) + f(x+3y) - f(x-3y) - 48f(x) - 48f(y).$$

Now, by adding (2.15) and (2.17), we arrive at

$$(2.18) f(x+3y) + f(3x+y) = 12f(x+y) + 16f(x) + 16f(y).$$

Using (1.3), we have

$$(2.19) 16f(3x+z) + 16f(3x-z) + 16f(3y+z) + 16f(3y-z)$$

$$= 48f(x+z) + 48f(x-z) + 768f(x) + 48f(y+z)$$

$$+48f(y-z) + 768f(y).$$

Also, putting x = 3x + z and y = 3y + z in (2.18) and using (1.3), respectively, we deduce that

$$16f(3x+z) + 16f(3y+z) + 16f(3x-z) + 16f(3y-z)$$

$$= f(3x+9y+4z) + f(9x+3y+4z) - 12f(3x+3y+2z)$$

$$+f(3x+9y-4z) + f(9x+3y-4z) - 12f(3x+3y-2z)$$

$$= 3f(x+3y+4z) + 3f(x+3y-4z) + 48f(x+3y)$$

$$+3f(3x+y+4z) + 3f(3x+y-4z) + 48f(3x+y)$$

$$-36f(x+y+2z) - 36f(x+y-2z) - 576f(x+y),$$

which yields, by virtue of (2.19), the relation

$$(2.20) 3f(3x + y + 4z) + 3f(3x + y - 4z) + 48f(3x + y) + 3f(x + 3y + 4z) + 3f(x + 3y - 4z) + 48f(x + 3y) = 48f(x + z) + 48f(x - z) + 768f(x) + 48f(y + z) + 48f(y - z) + 768f(y) + 36f(x + y + 2z) + 36f(x + y - 2z) + 576f(x + y).$$

On account of (2.18) and (1.3), the left hand side of (2.19) can be written in the form

$$(2.21) 16f(3x+z) + 16f(3y-z) + 16f(3x-z) + 16f(3y+z)$$

$$= f(3x+9y-2z) + f(9x+3y+2z) - 12f(3x+3y)$$

$$+f(9x+3y-2z) + f(3x+9y+2z) - 12f(3x+3y)$$

$$= 3f(x+3y+2z) + 3f(x+3y-2z) + 48f(x+3y)$$

$$+3f(3x+y+2z) + 3f(3x+y-2z) + 48f(3x+y)$$

$$-648f(x+y).$$

Replacing z by 2z in (2.21) and then applying (2.20), we obtain

$$(2.22) 16f(3x+2z) + 16f(3y-2z) + 16f(3x-2z) + 16f(3y+2z)$$

$$= 3f(x+3y+4z) + 3f(x+3y-4z) + 48f(x+3y)$$

$$+3f(3x+y+4z) + 3f(3x+y-4z)$$

$$+48f(3x+y) - 648f(x+y)$$

$$= 768f(x) + 768f(y) + 48f(x+z) + 48f(x-z) + 48f(y+z)$$

$$+48f(y-z) + 36f(x+y+2z) + 36f(x+y-2z) - 72f(x+y).$$

Again, making use of (2.18) and (1.3), we get

$$(2.23) \quad 16f(3x+2z)+16f(3x-2z)+16f(3y+2z)+16f(3y-2z)$$

$$= f(12x+4z)+f(12x-4z)-12f(6x)$$

$$+f(12y+4z)+f(12y-4z)-12f(6y)$$

$$= 64f(3x+z)+64f(3x-z)-2592f(x)+64f(3y+z)$$

$$+64f(3y-z)-2592f(y)$$

$$= 64[3f(x+z)+3f(x-z)+48f(x)+3f(y+z)+3f(y-z)$$

$$+48f(y)]-2592f(x)-2592f(y)$$

$$= 192f(x+z)+192f(x-z)+480f(x)$$

$$+192f(y+z)+192f(y-z)+480f(y).$$

Finally, if we compare (2.22) with (2.23), then we conclude that

$$(2.24) f(x+y+2z) + f(x+y-2z) + 8f(x) + 8f(y)$$

$$= 2f(x+y) + 4f(x+z) + 4f(x-z) + 4f(y+z) + 4f(y-z)$$

for all $x, y \in G$.

Define the function $F: G \times G \to X$ by

$$F(x,y) = \frac{1}{36} [8f(x+y) + 8f(x-y) - f(2x+y) - f(2x-y)]$$

for all $x, y \in G$. Then by an simple calculation, we see that

$$F(x,x) = \frac{1}{36} [8f(2x) - f(3x) - f(x)] = f(x)$$

for all $x\in G$. Now, we claim that for each fixed $x\in G$, the function $Q:G\to X$ defined by Q(y)=F(x,y) for all $y\in G$ is quadratic.

Indeed, utilizing (2.24) and the oddness of f, we get

$$36[F(x,y+2z) + F(x,y-2z) - 2F(x,y) - 8F(x,z)]$$

$$= 8f(x+y+2z) + 8f(x-y-2z) - f(2x+y+2z)$$

$$-f(2x-y-2z) + 8f(x+y-2z) + 8f(x-y+2z)$$

$$-f(2x+y-2z) - f(2x-y+2z) - 16f(x+y) - 16f(x-y)$$

$$+2f(2x+y) + 2f(2x-y) - 64f(x+z) - 64f(x-z)$$

$$+8f(2x+z) + 8f(2x-z)$$

$$= 16f(x+y) + 32f(y+z) + 32f(y-z) + 32f(x+z) + 32f(x-z)
-64f(x) - 64f(y) + 16f(x-y) - 32f(y-z) - 32f(y+z)
+32f(x+z) + 32f(x-z) - 64f(x) + 64f(y) - 2f(2x+y)
-4f(y+z) - 4f(y-z) - 4f(2x+z) - 4f(2x-z) + 64f(x)
+8f(y) - 2f(2x-y) + 4f(y-z) + 4f(y+z) - 4f(2x+z)
-4f(2x-z) + 64f(x) - 8f(y) - 16f(x+y) - 16f(x-y)
+2f(2x+y) + 2f(2x-y) - 64f(x+z) - 64f(x-z)
+8f(2x+z) + 8f(2x-z) = 0.$$

Therefore, it follows from Lemma 2.1 that Q is quadratic.

Also, by using the similar argument, we can show that for each fixed $y \in G$,

$$36[F(x+2z,y) + F(x-2z,y) - 2F(x,y)] = 0$$

for all $x \in G$, and so we see that for each fixed $y \in G$, the function $A: G \to X$ defined by A(x) = F(x,y) for all $x \in G$ is additive by Lemma 2.2.

(Sufficiency). Assume that there exists a function $F: G \times G \to X$ such that f(x) = F(x, x) for all $x \in G$, and for fixed $y \in G$, $A: G \to X$ defined by A(x) = F(x, y) for all $x \in G$ is additive and for fixed $x \in G$, $Q: G \to X$ defined by Q(y) = F(x, y) for all $y \in G$ is quadratic. Then for fixed $w \in G$, the function $B_w: G \times G \to X$ defined by $B_w(x, y) = \frac{1}{4}[F(w, x+y) - F(w, x-y)]$ for all $x, y \in G$ is symmetric and biadditive because $Q = F(w, \cdot)$ is quadratic [1]. Therefore, we have

$$f(3x + y) + f(3x - y) - 3f(x + y) - 3f(x - y) - 48f(x)$$

$$= F(3x + y, 3x + y) + F(3x - y, 3x - y)$$

$$-3F(x + y, x + y) - 3F(x - y, x - y) - 48F(x, x)$$

$$= F(3x, 3x + y) + F(y, 3x + y) + F(3x, 3x - y) - F(y, 3x - y)$$

$$-3F(x, x + y) - 3F(y, x + y) - 3F(x, x - y)$$

$$+3F(y, x - y) - 48F(x, x)$$

$$= 2F(3x, 3x) + 2F(3x, y) - 6F(x, x) - 6F(x, y) + 4B_y(3x, y)$$

$$-12B_y(x, y) - 48F(x, x) = 0.$$

That is, f satisfies the equation (1.3). This completes the proof of the theorem.

3. Stability of Eq. (1.3)

In this section, we will investigate the generalized Hyers-Ulam-Rassias stability problem [6] for the functional equation (1.3).

Let $\phi: G \times G \to [0, \infty)$ be a function such that

$$\sum_{i=0}^{\infty} \frac{\phi(3^i x, 0)}{27^i} < \infty \quad \text{and} \quad \lim_{n \to \infty} \frac{\phi(3^n x, 3^n y)}{27^n} = 0$$

for all $x, y \in G$.

THEOREM 3.1. Let X be a Banach space. If a function $f: G \to X$ satisfies the inequality

$$(3.1) ||f(3x+y)+f(3x-y)-3f(x+y)-3f(x-y)-48f(x)|| \le \phi(x,y)$$

for all $x, y \in G$, then there exists a unique cubic function $C: G \to X$ which satisfies the equation (1.3) and the inequality

(3.2)
$$||f(x) - C(x)|| \le \frac{1}{54} \sum_{i=0}^{\infty} \frac{\phi(3^{i}x, 0)}{27^{i}}$$

holds for all $x \in G$, where the function C is given by

(3.3)
$$C(x) = \lim_{n \to \infty} \frac{f(3^n x)}{27^n}$$

for all $x \in G$.

Proof. Putting y = 0 in (3.1) and dividing by 54, we have

(3.4)
$$\left\| \frac{f(3x)}{27} - f(x) \right\| \le \frac{1}{54} \phi(x, 0)$$

for all $x \in G$. Replacing x by 3x in (3.4) and dividing by 27 and summing the resulting inequality with (3.4), we get

(3.5)
$$\left\| \frac{f(3^2x)}{27^2} - f(x) \right\| \le \frac{1}{54} [\phi(x,0) + \frac{\phi(3x,0)}{27}]$$

for all $x \in X$. Using the induction on n, we obtain that

(3.6)
$$\left\| \frac{f(3^n x)}{27^n} - f(x) \right\| \leq \frac{1}{54} \sum_{i=0}^{n-1} \frac{\phi(3^i x, 0)}{27^i}$$
$$\leq \frac{1}{54} \sum_{i=0}^{\infty} \frac{\phi(3^i x, 0)}{27^i}$$

for all $x \in X$. In order to prove convergence of the sequence $\{\frac{f(3^n x)}{27^n}\}$, we divide the inequality (3.6) by 27^m and also replace x by $3^m x$ to find that for n, m > 0,

$$\left\| \frac{f(3^{n}3^{m}x)}{27^{n+m}} - \frac{f(3^{m}x)}{27^{m}} \right\| = \frac{1}{27^{m}} \left\| \frac{f(3^{n}3^{m}x)}{27^{n}} - f(3^{m}x) \right\|$$

$$\leq \frac{1}{54 \cdot 27^{m}} \sum_{i=0}^{n-1} \frac{\phi(3^{m+i}x, 0)}{27^{i}}$$

$$\leq \frac{1}{54} \sum_{i=0}^{\infty} \frac{\phi(3^{m+i}x, 0)}{27^{m+i}}.$$

Since the right hand side of the inequality tends to 0 as $m \to \infty$, the sequence $\{\frac{f(3^n x)}{27^n}\}$ is a Cauchy sequence. Therefore, we may define $C(x) = \lim_{n \to \infty} 27^{-n} f(3^n x)$ for all $x \in G$. By letting $n \to \infty$ in (3.6), we arrive at (3.2). To show that C satisfies the equation (1.3), let us replace x and y by $3^n x$ and $3^n y$ in (3.1), respectively, and divide by 27^n . Then it follows that

$$27^{-n} \| f(3^{n}(3x+y)) + f(3^{n}(3x-y)) - 3f(3^{n}(x+y)) - 3f(3^{n}(x-y)) - 48f(3^{n}x)) \|$$

$$\leq 27^{-n} \phi(3^{n}x, 3^{n}y),$$

and by taking the limit as $n \to \infty$, we see that C satisfies (1.3) for all $x, y \in G$.

To prove that the cubic function C is unique under the inequality (3.2), if we assume that there exists a cubic function $S: G \to X$ which satisfies (1.3) and (3.2), then we have $S(3^n x) = 27^n S(x)$ and $C(3^n x) = 27^n C(x)$ for all $x \in G$. Hence it follows from (3.2) that

$$||S(x) - C(x)|| = 27^{-n} ||S(3^n x) - C(3^n x)||$$

$$\leq 27^{-n} (||S(3^n x) - f(3^n x)|| + ||f(3^n x) - C(3^n x)||)$$

$$\leq \frac{1}{27} \sum_{i=0}^{\infty} \frac{\phi(3^{n+i} x, 0)}{27^{n+i}}$$

for all $x \in G$. By letting $n \to \infty$ in this inequality, it is immediate that C is unique. This completes the proof of the theorem.

From Theorem 3.1, we obtain the following corollary concerning the stability of the equation (1.3) in the sense of Hyers, Ulam and Rassias [13].

COROLLARY 3.2. Let X and Y be a real normed space and a Banach space, respectively, and let $\varepsilon \geq 0$ and $0 \leq p < 3$ be real numbers. If a function $f: X \to Y$ satisfies

(3.7)

$$||f(3x+y)+f(3x-y)-3f(x+y)-3f(x-y)-48f(x)|| \le \varepsilon(||x||^p+||y||^p)$$

for all $x, y \in X$, then there exists a unique cubic function $C: X \to Y$ which satisfies the equation (1.3) and the inequality

$$||f(x) - C(x)|| \le \frac{\varepsilon}{2(27 - 3^p)} ||x||^p$$

for all $x \in X$, where the function C is given by $C(x) = \lim_{n \to \infty} \frac{f(3^n x)}{27^n}$ for all $x \in X$.

Moreover, if for each fixed $x \in X$ the mapping $t \mapsto f(tx)$ from \mathbb{R} to Y is continuous, then $C(rx) = r^3C(x)$ for all $r \in \mathbb{R}$.

The proof of the last assertion in the above corollary goes through in the same way as the one in [4]. Unfortunately, we don't know whether the cubic equation holds the Hyers-Ulam-Rassias stability if p=3 is assumed in the inequality (3.7).

The following corollary is the Hyers-Ulam stability [7] of the equation (1.3) which also is an immediate consequence of Theorem 3.1.

COROLLARY 3.3. Let X be a Banach space, and let $\varepsilon \geq 0$ be a real number. If a function $f: G \to X$ satisfies

$$||f(3x+y) + f(3x-y) - 3f(x+y) - 3f(x-y) - 48f(x)|| \le \varepsilon$$

for all $x, y \in G$, then there exists a unique cubic function $C: G \to X$ defined by $C(x) = \lim_{n \to \infty} \frac{f(3^n x)}{27^n}$ which satisfies the equation (1.3) and the inequality

$$||f(x) - C(x)|| \le \frac{\varepsilon}{52}$$

for all $x \in G$. Moreover, if for each fixed $x \in G$ the mapping $t \mapsto f(tx)$ from \mathbb{R} to X is continuous, then $C(rx) = r^3C(x)$ for all $r \in \mathbb{R}$.

ACKNOWLEDGEMENT. We would like to thank the anonymous referee for his valuable comments.

References

- [1] J. Aczél and J. Dhombres, Functional equations in several variables, Cambridge Univ. Press, 1989.
- [2] J. Baker, The stability of the cosine equation, Proc. Amer. Math. Soc. 80 (1980), no. 3, 411-416.

- [3] P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), no. 1-2, 76-86.
- [4] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59-64.
- [5] Dan Amir, Characterizations of inner product spaces, Birkhäuser-Verlag, Basel, 1986.
- [6] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), no. 3, 431-436.
- [7] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.
- [8] D. H. Hyers, G. Isac and Th. M. Rassias, Stability of functional equations in several variables, Birkhäuser, Basel, 1998.
- [9] P. Jordan and J. Von Neumann, On inner products in linear, metric spaces, Ann. of Math. 36 (1935), no. 3, 719-723.
- [10] S.-M. Jung, On the Hyers-Ulam stability of the functional equations that have the quadratic property, J. Math. Anal. Appl. 222 (1998), no. 1, 126-137.
- [11] Y.-S. Jung and K.-H. Park, On the stability of the functional equation f(x+y+xy)=f(x)+f(y)+xf(y)+yf(x), J. Math. Anal. Appl. **274** (2002), no. 2, 659-666.
- [12] Pl. Kannappan, Quadratic functional equation and inner product spaces, Results Math. 27 (1995), no. 3-4, 368-372.
- [13] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297–300.
- [14] F. Skof, Proprietà locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129.
- [15] S. M. Ulam, Problems in modern mathematics, Chap. VI, Science ed., John Wiley & Sons, New York, 1964.

Kyoo-Hong Park, Department of Mathematics Education, Seowon University, Chungbuk 361-742, Korea

E-mail: parkkh@domino.seowon.ac.kr

YONG-SOO JUNG, DEPARTMENT OF MATHEMATICS, CHUNGNAM NATIONAL UNIVERSITY, TAEJON 305-764, KOREA

E-mail: ysjung@math.cnu.ac.kr