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UNIQUENESS OF POSITIVE STEADY
STATES FOR WEAK COMPETITION
MODELS WITH SELF-CROSS DIFFUSIONS

WoNLYUL KO AND INKYUNG AHN

ABSTRACT. In this paper, we investigate the uniqueness of positive
solutions to weak competition models with self-cross diffusion rates
under homogeneous Dirichlet boundary conditions. The methods
employed are upper-lower solution technique and the variational
characterization of eigenvalues.

1. Introduction

Of concern is the uniqueness of positive solutions to 2 x 2 elliptic
interacting system:

—(al + Biu+ ")’1’U)AU = u(a1 —C1U — bl’U)
(1.1) —(a2 + you + B2v)Av = v(ag — byu — cav) in £,
(u,v) = (0,0) on 012,

where 2} C R™ is a bounded region with smooth boundary, «;, a;, b;, ¢;
are positive constants and §;, v; are nonnegative constants.
The system (1.1) is the steady state of the diffusive Lotka-Volterra
competition model:
(1.2)
ur — (a1 + Bru + mv)Au = u(a; — cyu — byv)
v — (@2 + You + Bav)Av = v(ag — bau — cov) in Q x (0, 00),
(u,v) = (0,0) on 99 x (0, 00),

which has linear self-cross diffusion rates with respect to u, v. Here u, v
may represent the densities of two species interacting competitively each
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other. An extended form for the steady states of (1.2) was studied in
[11], which is the self-cross diffusive model:

—A(dl + Biiu+ ﬂlzv)u = (a1 — biyu — bigv)u
(1.3) —A(d2 + Paru + Bazv)v = (az — ba1u — bogv)v  in Q,
(u,v) = (0,0) on 9.

The authors gave sufficient conditions for the existence of positive solu-
tions using the theory of fixed point on positive cones. The uniqueness
of positive solutions to (1.3) has not been known yet, however we are
able to provide sufficient conditions for the uniqueness of a positive co-
existence to (1.1) which is a simpler form than (1.3).

We say that the system (1.1) has a positive solution (u,v) if u(z) >0
and v(z) > 0 for all z € Q. The existence of a positive solution (u,v)
to the system (1.1) is called a positive coezistence. The system (1.1) is
said to be in a weak competition if it satisfies g > 2 > z—;.(See 8].)

Notice that since the diffusion rates a; + Siu + v1v, as + you + Gov
are strictly positive, the system (1.1) is equivalent to the system:

_Au:u<a1—61’u—bl’u)
ar + fiu+nv
as — bou — cov
ag + yau + Bov
(u,v) = (0,0) on ON.

(1.4)

—Av=v in €2,

Thus we shall use the form (1.4) to investigate the uniqueness of a pos-
itive coexistence for the system (1.1).

In the case that §;, ~y; are equal to 0 and a; = 1 in the system (1.1), by
normalizing u and v appropriately, (1.1) becomes the following diffusive
Lotka-Volterra competition model:

—Au = u(a; — u — bv)
(1.5) —Av =v(az — bpu —v) in Q
(u,v) = (0,0) on 012,

which there has been a great deal of work by many authors. See [1,
2, 3, 4,9, 10] and the references therein. In [2, 4, 9, 10|, the authors
investigated the uniqueness of positive solution of the system (1.5). We
point out that our uniqueness theorem covers their results since the
model (1.5) is a special form of the system (1.1).
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In [6], the authors investigated the existence of positive solutions of
the following elliptic equations:

—Au = uM (z,u,v)

—Av = vN(z,u,v), in Q
aa—z +Bu=0

bz, +ov =0 on 09,

where the functions M, N satisfy some conditions, 3, o are positive and
a, b are nonnegative constants.

The system (1.4) is the special case of the model (1.6) with M (z, u,v)
= fogubiv N(z,u,v) = 278400 apd ¢ = b = 0. So we may
employ the same method, the fixed point index theory, to show the
existence of positive solutions of (1.4). Hence we mainly discuss about
the uniqueness of positive solutions of (1.4)(or (1.1)) in this article.

In Section 2, we give some known lemmas and definitions which shall
be needed later and state the positive coexistence theorem for the system
(1.1). In Section 3, we provide sufficient conditions for the uniqueness
of positive solutions to the system (1.1). The methods employed are
upper-lower solution technique and the variational characterization of
eigenvalues.

(1.6)

2. Preliminaries and coexistence

In this section, we state some known lemmas, definitions and nota-
tions which are useful in the following section. The positive coexistence
theorem is also provided.

Throughout this article, we denote A\j(A) the first eigenvalue of an
operator A under homogeneous Dirichlet boundary conditions.

Consider the following scalar equation:

cu

a.__.

=0 in Q

(2.1) {Au+u(a+ﬂu) 0 in €,
u =10 on 01,

where a > 0,6 >0,c>0and 3> 0.
The following lemma can be obtained from the result in [6] with

M(z,u) = ;‘;E;& under homogeneous Dirichlet boundary conditions.

LEMMA 2.1. Suppose that £ > A\(—A). The problem (2.1) has a

o
unique positive solution u € C?(€).

One can observe that, by the maximum principle, the unique positive
solution of (2.1) is bounded by 2.
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NOTATION 2.2. For £ > A\(—A), let §(a, c,a, 3) be the unique posi-
tive solution of

a—cl ,
A0+0(a+ﬁ9) =0 inQ
0 =0 on S
Assumethata>?i,c<5,a<52andﬁ<§. Then for % >%>

_ (a,c,0,3) 0(a,c,a,0) A
A1(—A), let K [—*(a,z,a, 6)] denote the supremum of Pazad on €.

The following lemma can be obtained by the obvious change of nota-
tions from Lemma 4 in [7].

LEMMA 2.3. (i) (ﬁ%) — 6(a,c,a, ) is a continuous mapping of
C(Q x Rt) — CY*(Q) for some a € (0,1).

(i) If g;g% > g;;% 2 gl/ca% for € Q, then either 8(a,c,a,3) >

&, ) (in the case & > 2 > N (-4)) orb(a,c,0,8) = 0(a, ¢, &, 3)
n the other cases).

0(a, ¢,
=0 (i

Observe that since 6{(a,c, «, §), 8(a,c, &, ,5) > 0 on Q and § is com-
pact, K[M] is finite. Moreover, the fact 8(a, ¢, a, 3) > 0(a, <, a, ,E)

(a,8,6,8)

fora>a,c<¢ a<a, < by Lemma 2.3 implies K[Egggg] > 1.

DEFINITION 2.4. () (u,v) is called an upper solution for the system
(1.1) if

—(01 + fru+ v)Au > u(a; — au — byv)
—(ag + you + B2v)Av > v(ag — byu — cov) in Q,
u>0, v>0 on 09,

(12) (u, v) is a lower solution for the system (1.1), if

—(a1 + Bru+ v1v)Au < ula; ~ cyu — byv)
—(a2 + you + B2v)Av < v(ag — byu — cv) in Q,
u <0, v<0 on 9.

Next we provide the existence theorem of positive solutions to the
system (1.1)(or (1.4)). One can show that if (%, ) is a solution of (1.1),
then & < £, ¥ < 2. So using a weak competition condition, 3 > x>
%, it is easy to check that Zﬁ;ﬁ:&% and g;;ggz;cﬁﬂ are decreasing in
both v and v where u € [0, 2), v e [0, %22) Therefore we may adopt

the existence result in [6] with M(z,u,v) = a@%, N(z,u,v) =
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az—bsu—cov — — . . .
P Teut o and a = b = 0 since our model is the special case of the

system (1.6) in [6].

We consider the existence of semi-trivial solutions of problem (1.1).
The system has exactly two semi-trivial solutions when exactly one of
the species is absent. Applying Lemma 2.1, notice that there exists a
unique positive solution, denoted by ug, of

_ a; —Cclu .
{ —Au = u<—a1 +ﬂ1u) in Q
u=0 on 09

if M(A+2Y) > 0, and vp solves the equation:

_ [(a2—covy
{ —Av—v(—a2+ﬁzv> in Q
v=20 on 0N

if A (A—l—g%) > 0. In fact, up = 6(a1, c1, 01, 61) and vy = 6(ag, cz, oz, F2).
The following is the positive coexistence theorem for the system (1.1).

THEOREM 2.5. Assume I—% > %—; > % Suppose & > A1(—A) and

2’ ai

22 > M(—A). If the first eigenvalue of the operators A + a—bivo 4pd

a1+y1v0

ag—bov . . .. .
A+ ﬁqﬁ% has the same sign, i.e., both positive, negative, or zero, then

the system (1.1) has a positive solution.

Let af = a; — bi(ﬂ), o = +’yz-(gi) for i,7 = 1,2 and 1 # j.
Gy J
Consider the following condition on the system (1.1):

a*

(2.2) — > M\ (—A) fori=1,2.
Q;

Since the condition (2.2) implies A1(A + &£) > 0 for 4« = 1,2, there
exist the solutions 6(a;,c;, o, 8;) and 6(al,c;,af,3;) for i = 1,2, by
Lemma 2.1. Using 6(as, ¢i, i, 0;) < ¢ for i = 1,2, one can see that
(0(01, C1, 01, /81)7 9((12’ C2, 2, B?))7 (9(0,’{, C1, a){a /Bl)y 9(&3, C2, CYE, /32)) is an
upper/lower solution pair. Furthermore observe that the condition (2.2)
guarantees the existence of positive solutions to (1.1) since (2.2) makes
the assumptions A1 (A + %ﬁ%ﬁ%) >0, M(A+ ;‘;;—f’;ﬁ%) > 0 in Theorem
2.5 hold. Alternatively, one can show the existence of positive solutions
using upper-lower solution method and condition (2.2). We omit such a
simple argument.
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PROPOSITION 2.6. Assume that g > g1 > 2—; and (2.2) holds. Then
any coexistence state (u,v) for (1.1) satisfies 8(aj,c1, of,01) < u <
6(a1,c1,01,P1) and 0(a3, ¢z, a3, B2) < v < O(az, c2, a2, B2).

Proof. If (u,v) is a coexistence state for the system (1.4), then it is
easy to see that u is a lower solution to the problem:

a; — Ci1u
o + Bu

and v is a lower solution to the problem:

(2.3) Au+u( )=0 inQ, wuw=0 ondQ,

Qg — CoU

A
v+v(az + Bov

):o inQ, v=0 on 8.

Since any constant larger than 96—} is an upper solution of (2.3), the
uniqueness of a positive solution u to (2.3) implies u < 8(a1,¢1,a1,01) <
o. Similar argument gives v < 8(a, c2, o2, B2) < &.

On the other hand, since u < % and v < ‘C‘f, u is an upper solution
of the equation:

a) —cu

1

)=0 inQ), u=0 ondN

and v is an upper solution of the problem:
a; — cv
a§ + Bov
If (2.2) holds, then the unique solution é(a3, c1, o, B1) of (2.4) exists

by Lemma 2.1. Since u is an upper solution of (2.4), u > (a3, c1, af, 51)-
Similarly, v > 8(a3, c2, a3, B2). O

Av+v( )=OinQ, v =0 on 9.

Take @ = max{e;}, @ = min{e;}, ¢ = min{¢;}, B = min{B;}, a =
min{a}}, @ = max{a}}, ¢ = max{¢;} and 8 = max{f;}. We impose the
following assumption

(2.5) % > A (=A).

Then the assumption (2.5) implies the condition (2.2) and so guaran-
tees the existence of 6(a,c, o, ), 6(a,¢, &, 8). Moreover 8(a,c,a,5) >
0(a;, ci, i, 3;) and 0(a, ¢, &, B) < 6(a}, cf, o, B;) are satisfied for i = 1, 2.

17 7?

Thus by Proposition 2.6, K [M] > ¥ % where (u,v) is a positive

@eap] — v v
solution of (1.1).
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3. Uniqueness of positive solutions

In this section, we give sufficient conditions for the uniqueness of
positive solutions of (1.1).

THEOREM 3.1. Suppose that a weak competition model (1.1) satisfies
(2.5). The coexistence state is unique provided that fori,j = 1,2, i # j,
the inequalities

(3.1)

> +—5+—% =
M; © o} 207 207 Ll(5,5&,B)

cib; Bia; M; M; [(avcva’ﬁ)]

hold where My, = by + Yray, + by 2.

Proof. Suppose that (u1,v1) and (ug, v2) are positive solutions of the
system (1.1)(or (1.4)). Then those satisfy

ay —Cu] — bl’Ul
ay + Bruy + v

(32) Aul + Ul( ) =0 in Q, uy = 0 on 99Q.

and
a1 — ciug — byvy
aq + Bruz + 1ve

(3.3) Aug + u2< ) =0inQ, uz =0 on IN.

Let wy = uy — ug, wy = v1 — va. Subtracting (3.3) from (3.2) and
some substitutions provide

1
A — —b
wy + P R—— {(a1 — cru; — byvy)wy
(3.4) +B1(Aug)w; + y1(Aug)ws

—C1UsWy — b1U2’U}2} =0 in Q,

w1 =0 on J9Q.

Since (u3,v1) > 0 is a solution of (1.1), we may observe that the
principal eigenvalue of the problem

ay —ciuy — b11}1 .
Ay + = Q,
v w(al + fruy + ’71111) o in
1 =0 on 00}

is o1 = 0, with any multiple of u; as the eigenfunction.
By the variational property of eigenvalues, for any z € WO1 ’2(9),

(3.5) / [[V2|2 _ z2< a; — cuy — by )} >0
Q ai+ fiug +yiv1 /| T
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Multiplying (3.4) by w1, integrating by parts and using (3.5) imply

1
3.6 2.1 p
(3.6) /Q a1 + Brur + 11 {eruzuy + bruzwawn

— Bi(Aug)w? — 11 (Aug)wowr } < 0.

Applying the same argument that we did in the above for (3.2)-(3.6) to
the two equations involving v, and vy corresponding to (3.2)-(3.3), we
obtain

1
3.7 baviwiwe + covyws
3.7) /szaz+72uz+52v2{2 IRk

— B2(Av1)wi — y2(Avy)wrws} < 0.

Add (3.6) to (3.7) to get

0> / I:ClUZU/'% + brugwow — B1(Aug)w? — 71 (Aug)wow;
~ Ja o3 + Bruy + vt

bavywywy + 0211111)% - ﬁz(Avl)w% - 72(Av1)w1w2]
o + Youg + vy

:/ [ c1uz — Bi1(Aug) w? 4+ ( bruz — 11(Aug)

a Lo1 + Brur + v a1 + Bur +
bau1 — y2(Avy) ) wywy 4 20T Ba(Avy) wQ]_
a2 + yauz + Bavo az + Youg + fovz

(3.8) +

Observe that now it suffices to find conditions which make the right
side of (3.8) positive definite to conclude w; = wy = 0 which shows the
uniqueness of positive solutions.

For simplicity for the coefficients of w?, wjws and w3 in (3.8),we use
the notations :

_ au—fi(Auz) o biup ~ i(Aup)

o+ B+’ o F frug + vy
_ _bavy — y(Awy) Do v~ Ba(Avy)
az + youg + Pavg’ ag + yaug + Povg

Plugging —Aug = uz(%—;—fﬁg—l—l‘%) in A, the coefficient A of w? is

1 a1 —cjugp—bjv a
equal to gl up + 51“2(07#3113227%5%)]’ For up € [0, &) and
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- —b . .
vg € [0, 3), the fact of (——;&1 +21122 " 7117;22)1‘ < 0 implies that

a1 — c1ua — biv )

a1 + Brug + y1v2

_ u2(01(041 + Brug + v1v2) + fi(ar — crug — bl'UQ))
a1 + Brug + Y1v2

clug + 51“2(

a; — ciug — byvg )
ai + frug + 11ve/u
So A is positive. Similarly, it is not hard to see that the coefficient D of
w? is also positive.
On the other hand, by plugging —Aus = uﬂ%) in B and
using ug < ¢1,
1 ag — Ciug — b1v2

B = P . [b1us + Vluz(a1 T Brug ¥ 71?)2)]

1 [bl(al + frug + nve) + n1(a1 — cug — bIUQ)]u
a1 + Bru; + v ay + Bruz + 7102 2

1 [51(041 + Bruz) + 71(a1 — crug)
oy + frur + 1 a1 + Brus + Mve

= —ug(on + frug + 71U2)(

]uQ > 0.

So B is positive. Similarly, we can check the positivity of C. Thus the
coefficient B 4+ C of w; - wo is positive. Therefore the right hand side
of (3.8) can be considered as a quadratic form in the variables w; for
1=1,2.

Using v < %22 and the fact that u < % implies aju — cju? > 0, we
have

—u—b b
(—llu>—Au=u(a1 au 1v> > ad
oy ay + Bru+mv a1 + Bru + y1v
b _
> 14y > bru > —-a—lu.
a1 +mv — ai(ca/az) +m ai

The last inequality follows from the fact:

a) by _aifai(ez/a2) +m] — oy
a1 oa(cr/az) +m or(ar(cz/az) +m)
daicp+aim — o z—;a102 + a1 — by
~ aiea(ea/az) +m) a1(ai(cz/az) +m)
bia + a1y — b a1m

or(an(ca/az) +m)  oa(oalcz/az) + ) =0
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Thus a solution (u,v) of (1.1) satisfies
(3.9) B> —Au>-By
(051} (637
and similarly,
(3.10) B> —tv>-2y,
a2 a2
Since 0 < w1, us < %11 and 0 < v, v < 'i—;, we observe that a; <
a1 +Frur+mur < ea+pPi(ar/cr)+vi(az/c2) and ap < ag+vaug+F2vz <
as + va(a1/c1) + Ba(az/c2).
The inequality (3.9) and (3.10) implies that

(3.11) A= c1u2 __ Bi(Auy)
o1+ fiur +mvnn oq + frur + v
1 Hbax
> — (7
(et Ttaaren of )
and
(3.12) D c2u1 _ Ba(Aw)
oo + youz + fovy a2 + youz + Bav
c2 B2az
> — V1.
(a2+’72((11/01)+ﬂ2(a2/02) o2 ) .

For B and C, we already calculated the following;:

1 b b By —
(3.13) B= [ 101 +ma1 + (b B ’ylcl)ug]uz
o1 + Biur +mn oy + Prug + 12
and
1 b boBo —
(314) C= [ 202 + 7202 + (bofB2 7202)’01]“1‘
ag + Yauz + Bav2 ag + Yau1 + Govy

Next observe that (3.11)-(3.14) imply that [,[Aw? + (B + C)wiw, +
Dw?] is bigger than

/ [( 1 _ 51a1)u2w2
o [\a1 + Bi(ar/c1) +mlaz/ca) o '
bioy +v1a1 + (b1 — mer)ug
3.15 +
(3.15) ((al + Brug + y1v1)(ea + Brug + 71v2)
( boag + 202 + (b2 — Y2c2)01
(02 + you1 + Bavr) (o2 + youz + B2ve
co ﬁ2a2> 2]

)u2w1w2

))vlwlwz

+ (az +1e(ar/c1) + Balaz/cs) o o
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Using the fact that B, C > 0 and —wiws < w?/2 + w2/2, we can see
that (3.15) is larger than

Ugwy

/ [( c1 _ ﬂla1> 2
o l\a1+Bi(ar/c1) +viaz/e2)  of

B brar + ma1 + (0161 — ie)up wy | W)
(3.16) ((al + Bruy + n1v1) (o1 + Brus + 71”2))u ( )

B ( baas + 202 + (b2ff2 — y2c2)U1 )U (w__% + 9_3.)
(a + Youy + Bov1) (0 + youz + Fovo) 2 2
e Baas 2]
+ — V1Ws | .
(Oé2 + ya2(a1/c1) + Bz(az/ca) o3 ) e

So if we can get the inequality (3.16) > 0, the positive definiteness of
the right hand side of (3.8) provides the uniqueness of the coexistence
state for (1.1). Combining all terms involving w? in the right hand side
of (3.16), the coefficient of w? becomes

( c1 B ,810'1>u2

a1 + Bi(ar/cr) +mlaz/cs)  af

(3.17) B ( biar +may + (b1f1 — yi61)up )1_Lg
(a1 + Brur + y1v1) (a1 + Brug + y1v2)/ 2

B ( baary + 7202 + (b2fB2 — y2c2)u1 )'Ul
( )/ 2

g + Y2uz + Bava) (a2 + your + Bav1)/ 2

and the coefficient of w2 is

( c2 _ IBZGZ)UI
ag +ve(ar/c1) + Palasfca) o

3 ( biog +mas + (0181 — m1e1)ue )1_13
(o1 + Brur + mv1)(on + Brug + mva)/ 2
B ( baaz + v2as + (282 — v2c2) 01 )311
(a2 + v2uz + Bavz) (02 + your + Bav1)/ 2

(3.18)

Using (3.13), (3.14) and the fact that the positivity of B, C implies
biay +may + (b161 — v1c1)ug > 0 and baag +vaaz + (b2 B2 — y2c2)v1 > 0,
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we can see that (3.17) is bigger than

( c1 _ ﬁlal)uz
o + Bi(ar/c1) +nilaa/co) o

bion +yia1 + (B161 — y1c1)u2) Uz

(3.19) B ( o? )—5
1

3 (bzaz + 7202 + (b282 — y2c2)01 ) v1

a3 27

Furthermore uy < ‘C‘J{ and v; < %;’L imply that the right hand side of
(3.19) is bigger than

( ) _ 51a1>u2
a1+ fi(ai/c1) + ni(az/c2) a2
(blal +ma + b/ ) ug

(3.20)

a2 2
(bza2 + yeaz + bzﬂ2%§> v
a3 27

So if we find conditions which satisfy (3.20) > 0, then we will get the
desired results.

Divide the inequality (3.20) > 0 by u2 to get

< c1 B al)
a1 + Pi(ar/c) +mi(az/c2)  of
(3.21) B (blal + ’71a12+ blﬂl%)
20
N (bzaz + 72a22+ b2ﬁ2%§> (v_1> ~o.
205

uz

By the definition of K [iijé‘f—@], we get L < K [(f%yw@] Moreover, a
(l,C,a,ﬂ) u2 (a,c,a,ﬂ)

weak competition condition implies %} > %5 Using these facts, we can
see that (3.21) holds if

( 1 B 51411)
a1+ Bi(ar/er) + m(ar/b1) o2
biog +may + b5 e
- ( 202 )
B (bzaz + Y202 + bzﬁ2%§)K[(a, c,a,
203

(3.22)

| >0

9
B

=Y

(a,c,

?
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Applying the same method as we did in (3.19)-(3.22) to (3.18), we obtain
( 2 _ 152(12)
az + Y2(az/be) + Ba(az/c2) o3
(bzaz + 202 + b262‘;—§)
202
B (5101 + 71a12+ blﬂl%)K[(a,c,a,@} >0
209 6)
This completes the proof. O

(a,c a,

Before we end this article, we discuss a known result in the literature
which is an immediate consequence from our uniqueness theorem.
Consider the following diffusive Lotka-Volterra model:

—Au = u(a; — ciu — byv)
(3.23) —Av =v(ag — bou — cov) in £,
(u,v) = (0,0) on 89,
where a;, b;, ¢;, ¢ = 1,2, are positive constants with a; # as.
In [4], authors gave the condition for the uniqueness of positive solu-
tions to (3.23) as the following:

b? b2
(3.24) 4cic0 > g——11{(041, ag — bz?—l) + 2b1bg + —c—l—zK(aQ,al - blglz)
cy c (6) C2

Here K(al,ag - bgal/cl) = K[%Z—%%—i:—g—;] and K(ag,al - blaz/Cz) =
(a2,1,1,0)
K[(Z;l,l,ﬂ)] :

COROLLARY 3.2. The corresponding conditions to (3.1) for the sys-
tem (3.23) imply the condition (3.24).

Proof. If we take a; =1, f; =0 and 7, =0 in (1.1) for i = 1,2, then
the conditions (3.1) become
(a,¢,1,0)

3.2 %1 > b bK[—~—~———
(.2)  2a>bh+bK|E2T0)

], 2ca >b2+b1K[§—,§:—g:—i:%§].

Then (3.25) implies that

(3.26)
s> (v [G2r]) ek G o)
- b?K[%%ll—:g—;] +biby + bgK[%g_Eg_ﬂ N blbgK[%_%_%]z
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Note K (3510) > 1, since K |{®2b9) 5’1 91 > 1. By the definition of a,
a,c,1,0) (@,61,0)

~ 6,1,0) 1,10 (a,c,1,0 ©2,1,0)
¢, @ and ¢, K[Eg,g’,l,oj] 2 K“Zéﬁ;uﬁ] and K[ g,E,l og] 2 K[EZizl 0)]

Using the fact 8(a,c,1,0) = %G(a, 1,1,0), we have that K[g—éz%,g—;] =

c {a1,1,1,0) (a2,¢2,1,0) | __ {a2,1,1,0)
ﬁK[(;%’—LW] and K[(%;i—’l’o—)] = %K[(Z%,l,ro)] Thus we get the

condition (3.24) which is the uniqueness condition in [4]. a

REMARK 3.3. The result in [3] also can be obtained from Theorem
3.1. Namely, a positive solution of the competition model :

~Au =ula—u—cv)
(3.27) : ~Av=v(a—eu—v) in{Q,
(u,v) = (0,0) on IR

is unique if 0 < ¢ < 1, 0 < e < 1. This uniqueness theorem follows
with ease : A weak competition condition implies their assumptions
0<ce<l Soifwetake 1 = f2=0,a1 =a2 =b, 11 =7 =0,
ag=az=1,¢c1 =cp=1. by =¢, by = e in (1.1), then the assumption
(3.1) in Theorem 3.1, c+e < 2, holds always for the model (3.27) without
any extra assumptions.
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