DOI QR코드

DOI QR Code

Frequency stabilization of 1.5μm laser diode by using double resonance optical pumping

이중공명 광펌핑을 이용한 1.5μm 반도체 레이저 주파수 안정화

  • Moon, Han-Sub (Center for Information and Telecommunication Standards, Korea Research Institute of Standards and Science) ;
  • Lee, Won-Kyu (Center for Information and Telecommunication Standards, Korea Research Institute of Standards and Science) ;
  • Lee, Rim (Department of Physics Education, Korea National University of Education) ;
  • Kim, Joong-Bok (Department of Physics Education, Korea National University of Education)
  • 문한섭 (한국표준과학연구원 정보통신표준센터) ;
  • 이원규 (한국표준과학연구원 정보통신표준센터) ;
  • 이림 (한국교원대학교 물리교육과) ;
  • 김중복 (한국교원대학교 물리교육과)
  • Published : 2004.06.01

Abstract

We present the double resonance optical pumping(DROP) spectra in the transition 5P$_{3}$2/-4D$_{3}$2/ and 5P$_{3}$2/-4D$_{5}$ 2/ of ($^{87}$ Rb) and the frequency stabilization in the $1.5mutextrm{m}$ region using those spectra. Those spectra have high signal-to-noise ratio and narrow spectral linewidth, which is about 10 MHz. We could account fur the relative intensities of the hyperfine states of those spectra by the spontaneous emission into the other state. When the frequency of the $1.5mutextrm{m}$ laser diode was stabilized to the DROP spectrum, the frequency fluctuation was about 0.2 MHz fDr sampling time of 0.1 s and the Allan deviation(or the square root of the Allan variance) was about 1${\times}$10$^{-11}$ for averaging time of l00s.

우리는 이중공명 광펌핑(double resonance optical pumping; DROP)효과를 이용하여 루비듐($^{87}$ Rb) 원자의 5P$_{3}$2/-4D$_{3}$2/와 5P$_{3}$2/-4D$_{5}$ 2/ 전이선에서 DROP 스펙트럼을 관측하고, 1.5 $\mu\textrm{m}$ 레이저의 주파수를 무변조 안정화하였다. 관측한 DROP 스펙트럼은 기존의 광-광이중공명(optical-optical double resonance; OODR) 스펙트럼보다 높은 신호대잡음비를 가지며, 약 10 MHz의 좁은 선폭을 갖고 있다. DROP 스펙트럼의 상대적인 세기는 자발방출에 의한 광펌핑 정도로 설명할 수 있었다. DROP스펙트럼에 안정화된 1.5 $\mu\textrm{m}$ 레이저의 주파수 흔들림은 샘플링 시간 0.1초에서 0.2 MHz로 측정되었고, 상대주파수 흔들림은 평균시간 100초에서 약 1${\times}$$10^{-11}$이었다.

Keywords

References

  1. ITU-T G. 694.1 Recommendation
  2. Electron. Lett. v.24 no.16 Frequency-locking of a 1.5μm DFB laser to an atomic krypton line using optogalvanic effect Y.C.Chung;C.B.Roxlo https://doi.org/10.1049/el:19880713
  3. Optics Lett. v.16 no.11 Saturation measurements of excited-state transitions in noble gases using the optogalvanic effect A.J.Lucero;Y.C.Chung;S.Reilly;R.W.Tkach https://doi.org/10.1364/OL.16.000849
  4. Technical Digest Symposium on Optical Fiber Measurements, 2000(NIST SP 953) Saturated optogalvanic transition in krypton at 1564 nm D.A.Humphreys
  5. Photon. Technol. Lett. v.1 Trequency-locking of 1.3μm DFB laser using a miniature argon glow lamp Y.C.Chung https://doi.org/10.1109/68.36013
  6. Photon. Technol. Lett. v.1 Trequency-locking of 1.5μm DFB laser diode to a neon indicator lamp using optogalvanic effect S.G.Menocal;N.Andreadakis;J.S.Patel;J.Werner;C.E.Zah;T.P.Lee;P.F.Liao https://doi.org/10.1109/68.43350
  7. IEEE Phot. Technol. Lett. v.4 no.11 Wavelength measurements of the sub-Doppler spectral lines of RB at 1.3μm and 1.5μm H.Sasada https://doi.org/10.1109/68.166978
  8. S. L. Gilbert, “Frequency stabilization of a fiber laser to rubidium: a high-accuracy 1.53 m wavelength standard,” in Proc. SPIE 1837: Frequency Stabilized Lasers and Their Applications, Boston, MA, pp. 146-153. 1992.
  9. Proc. SPIE 1837: Frequency Stabilized Lasers and Their Applications Frequency stabilization of a fiber laser to rubidium: a high-accuracy 1.53μm wavelength standard S.L.Gilbert
  10. Proc. SPIE 1837: Frequency Stabilized Lasers and Their Applications Observation and characterization of $^{87}$Rb resonances for frequency-locking purpose of a 1.53 μm DFB laser M.Breton;P.Tremblay;N.Cyr;C.Julien;M.Tetu;B.Villeneuve https://doi.org/10.1109/19.377799
  11. IEEE Trans. Instru. Meas. v.44 no.2 Optically pumped rubidium as a frequency standard as 196THz M.Breton;P.Tremblay;C.Julien;N.Cyr;M.Tetu;C.Latrasse https://doi.org/10.1109/19.377799
  12. Opt. Lett. v.18 no.17 Optical probing of cold trapped atoms R.W.Fox;S.L.Gilbert;L.Hollberg;J.H.Marquardt https://doi.org/10.1364/OL.18.001456
  13. Jpn. J. Appl. Phys. v.22 no.10 Spectral measurements of NH₃and H₂O for pollutant gas monitoring by 1.5mum InGaAsP/InP lasers M.Ohtsu;H.Kotani;H.Tagawa https://doi.org/10.1143/JJAP.22.1553
  14. Appl. Phys. Lett. v.45 no.8 Frequency stabilization of 1.5-μm InGaAsP distributed feedback laser to NH₃absorption lines T.Yanagawa;S.Saito;Y.Yamamoto https://doi.org/10.1063/1.95432
  15. Opt. Soc. Am. B v.13 no.12 Accurate optical frequency atlas of the 1.5μm bands of acetylene K.Nakagawa;M,de Labachelerie;Y.Awiji;M.Kourogi https://doi.org/10.1364/JOSAB.13.002708
  16. Opt. Comm. v.142 Saturation spectroscopy of an acetylene molecule in the 1550 nm region using an erbium doped fiber amplifier A.Onae;K.Okumura;Y.Miki;T.Kurosawa;E.Sakuma;J.Yoda;K.Nakagawa https://doi.org/10.1016/S0030-4018(97)00308-8
  17. Opt. Comm. v.209 Frequency stabilization of a 1.54μm Er-Yb laser against Doppler-free $^{13]$C₂H₂lines G.Galzerano;C.Svelto;F.Ferrario;A.Onae;M.Marano;E.Bava https://doi.org/10.1016/S0030-4018(02)01718-2
  18. Appl. Optics. v.29 no.24 Calibration lines of HCN in the 1.5μm region H.Sasada;K.Yamada https://doi.org/10.1364/AO.29.003535
  19. SPIE-the laser Internaional society for optical engineering no.1837 1.55μm-band practical frequency-stabilized semiconductor laser using C2H2 or HCN absorption lines S.Yoshitake;K.Akiyama;M.Iritani;H.Mutayama https://doi.org/10.1364/JOSAB.19.002461
  20. J. Opt. Soc. Am. B. v.19 no.10 Pressure0induced shift and broadening og 1560-1630 nm carbon monoxide wavelength-calibration lines W.C.Swann;S.L.Gilbert https://doi.org/10.1364/JOSAB.19.002461
  21. Optical Fiber Measurement Conference 2001 Preliminaty results of L-band exited-state optical frequency reference survey D.A.Humphreys;C.Campbell https://doi.org/10.1364/JOSAB.15.000006
  22. J. Opt. Soc. Am. B. v.15 no.1 Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy J.Ye;L.S.Ma;J.l.Hall https://doi.org/10.1364/JOSAB.15.000006