DOI QR코드

DOI QR Code

A Study on Temperature Dependence of Tunneling Magnetoresistance on Plasma Oxidation Time and Annealing Temperature

플라즈마 산화시간과 열처리 조건에 따른 터널링 자기저항비의 온도의존특성에 관한 연구

  • 김성훈 (고려대학교 공과대학 재료공학부) ;
  • 이성래 (고려대학교 공과대학 재료공학부)
  • Published : 2004.06.01

Abstract

We have studied to understand the barrier and interface qualities and structural changes through measuring temperature dependent spin-polarization as functions of plasma oxidation time and annealing time. Magnetic tunnel junctions consisting of SiO2$_2$/Ta 5/CoFe 17/IrMn 7.5/CoFe 5/Al 1.6-Ox/CoFe 5/Ta 5 (numbers in nm) were deposited and annealed when necessary. A 30 s,40 s oxidized sample showed the lowest spin-polarization values. It is presumed that tunneling electrons were depolarized and scattered by residual paramagnetic Al due to under-oxidation. On the contrary, a 60s, 70 s oxidized sample might have experienced over-oxidation, where partially oxidized magnetic dead layer was formed on top of the bottom CoFe electrode. The magnetic dead layer is known to increase the probability of spin-flip scattering. Therefore it showed a higher temperature dependence than that of the optimum sample (50 s oxidation). temperature dependence of 450 K annealed samples was improved when the as-deposited one compared. But the sample underwent 475 K and 500 K annealing exhibits inferior temperature dependence of spin-polarization, indicating that the over-annealed sample became microstucturally degraded.

자기 터널 접합(Magnetic Tunnel Junction, MTJ)의 플라즈마 산화시간과 열처리 온도에 따른 자기저항(Tunneling Magnetoresistance, TMR) 온도의존특성을 연구하였다. 플라즈마 산화시간을 30$_{s}$ 70$_{s}$ 까지 10$_{s}$ 간격으로 변화시켜 측정한 결과, 산화시간 50초에서 상온에서 25.3%의 가장 높은 TMR 비를 얻었다. 스핀 분극도 $P_{0}$ 스핀파 지수(spin wave parameter) $\alpha$를 구한 결과, 산화시간 50$_{s}$ 에서 40.3%의 가장 높은 스핀 분극도와 가장 낮은 온도 의존 특성인 (10$\pm$4.742)${\times}$$10^{-6}$ $K^{-1.5}$스핀파 지수(spin wave parameter) $\alpha$값을 얻었다. 그리고 온도별 열처리 결과 175$^{\circ}C$에서 TMR비가 25.3%에서 27.5%까지 증가하였으며 스핀파 지수는 (10$\pm$0.719)${\times}$$10^{-6}$ K $^{-1.5}$ 까지 감소하여 온도의존도가 감소하였다.

Keywords

References

  1. Phys. Lett. v.54A M.Julliere
  2. Phys. Rev. Lett. v.74 J.S.Moodera;L.R.Kinder;T.M.Wong;R.Meservey https://doi.org/10.1103/PhysRevLett.74.3273
  3. Science v.281 S.Gider;B.U.Runge;A.C.Marley;S.S.P.Parkin https://doi.org/10.1126/science.281.5378.797
  4. IEEE Trans. Magn. v.35 S.Teharni;J.M.Slaughter;E.Chen;M.Durlam;J.Shi;M.Deherrera https://doi.org/10.1109/20.800991
  5. Phys. Rev. B. v.58 C.H.Shang;J.Nowak;R.Jansen;J.S.Moodera https://doi.org/10.1103/PhysRevB.58.R2917
  6. J. Appl. Phys. v.89 T.Hagler;R.Kinder;G.Bayreuther https://doi.org/10.1063/1.1359229
  7. Phys. Rev. B. v.61 R.Jansen;J.S.Moodera https://doi.org/10.1103/PhysRevB.61.9047
  8. J. Magn. Magn. Mater. v.200 J.S.Moodera;G.Mathon https://doi.org/10.1016/S0304-8853(99)00515-6
  9. J. Appl. Phys. v.85 T.Mitsuzuka;K.Matsuda;A.Kamijo;H.Tsuge https://doi.org/10.1063/1.369926
  10. J. Appl. Phys. v.83 no.11 J.Zhang;R.M.White https://doi.org/10.1063/1.367644
  11. Appl. Phys. Lett. v.70 J.S.Moodera;E.F.Gallagher;K.Robinson;J.Nowak https://doi.org/10.1063/1.118168
  12. J. Appl. Phys. v.83 M.Sato;H.Kikuchi;K.Kobayashi https://doi.org/10.1063/1.367933
  13. Appl. Phys. Lett. v.77 Xiu-Feng;Mihiko Oogane;Hitoshi Kubota;Yasuo Ando;Ternoubu Miyazaki https://doi.org/10.1063/1.126951