Cloning and DNA Sequencing for Unstable Minisatellites DNA Regions in E. coli.

대장균 내에서 불안정한 Minisatellite DNA 영역의 클론닝 및 DNA 염기서열 결정

  • 임선희 (동아대학교 자연과학대학 생물학과) ;
  • 김재우 (동아대학교병원 임상병리) ;
  • 김광섭 (동아대학교 자연과학대학 생물학) ;
  • 정윤희 (동아대학교 자연과학대학 생물학) ;
  • 윤세련 (동아대학교 자연과학대학 생물학) ;
  • 배호정 (동아대학교 자연과학대학 생물학) ;
  • 안태진 (동아대학교 자연과학대학 생물학) ;
  • 선우양일 (동아대학교 자연과학대학 생물학과)
  • Published : 2004.06.01

Abstract

Instability of some eukaryotic sequence propagated in prokaryotic hosts is a frequently observed phenomenon. It is well documented that long inverted repeats, AT-rich sequences with structures like Z-DNA are extremely unstable in E. coli. These sequences may either be under-represented or even lost when cloned in E. coli. When we analyzed the polymorphic pattern for several tandom repeat (TR) in human SCKI gene, we found some TR regions were frequently deleted from plasmids and had difficult problem for their sequencing. These regions may result in non-clonability of the DNA sequence. Here we have cloned two difficult TR regions under low temperature and made two library for DNA sequencing using a nebulizer or sonicator. This study will help to determine the unstable genomic elements in complex mammalian genome.

진핵생물의 특정 염기배열을 원핵생물 내에서 증폭시킬 때 불안정성이 비교적 빈번히 관찰되어진다. 특히 long inverted repeats나 AT-rich sequences그리고 Z-DNA와 같은 구조를 지닌 염기배열은 대장균 내에서 매우 불안정하다. 이러한 염기서열은 대장균 내에서 부분적으로 결실되거나 완전히 손실된다. 본 연구실에서 human SCKI 유전자에 존재하는 몇 개의 tandem repeat (TR)에 대하여 다형성을 조사하였을 때, 어떤 TR 부분은 플라스미드로부터 빈번히 결실되어 그에 대한 염기서열 결정이 어려웠다. 그 결과 이러한 부분은 클론닝 될 수 없는 염기서열로 남게 되었다. 본 연구에서는 클론닝이 어려운 두 개의 TR 영역을 저온에서 클론닝하고 nebulizer나 sonicator를 이용하여 두 개의 library를 만들어 DNA 염기서열을 결정하였다. 이러한 연구는 복잡한 고등생물의 게놈연구에서 불안정한 게놈부분의 염기서열을 결정하는데 도움을 줄 것으로 사료된다.

Keywords

References

  1. Nucleic Acids Res. v.27 Tandem repeats finder: a program to analyze DNA sequences Benson,G. https://doi.org/10.1093/nar/27.2.573
  2. Genome analysis v.4 Birren,B.;E.D.Green;P.Hieter;S.Klapholz;R.M.Myers;H.Riethman;J.Roskams
  3. Science v.236 Cloning of large egments of DNA into yeast by means of artificial chromosome vectors Burke,D.T.;G.F.Carle;M.V.Olson https://doi.org/10.1126/science.3033825
  4. Genome v.31 Constructing chromosome an region-specific cosmid maps of the human genome Carrano,A.V.;P.J.de Jong;E.Branscomb;T.Slezak;B.W.Watkins https://doi.org/10.1139/g89-182
  5. Nature Genet. v.1 Construction of a mouse yeast artificial chromosome library in a recombination-deficient strain of yeast Chartier,F.L.;J.T.Keer;M.J.Sutcliffe;D.A.Henriques;P.Mileham;S.D.Brown https://doi.org/10.1038/ng0592-132
  6. Nature v.287 Isolation of a yeast centromere and construction of a functional small circular chromosome Clarke,L.;J.Carbon https://doi.org/10.1038/287504a0
  7. Nature v.419 Sequence of Plasmodium falciparum chromosomes2,10,11 and 14 Gardner,M.J.;S.J.Shallom;J.M.Carlton;S.L.Salzberg;V.Nene;A.Shoaibi;A.Ciecko;J.Lynn;M.Rizzo;B.Weaver;B.Jarrahi;M.Brenner;B.Parvizi;L.Tallon;A.Moazzez;D.Granger;C.Fujii;C.Hansen;J.Pederson;T.Feldblyum;J.Peterson;B.Suh;S.Angiuoli;M.Pertea;J.Allen;J.Selengut;O.White;L.M.Cummings;H.O.Smith;M.D.Adams;J.C.Venter;D.J.Carucci;S.L.Hoffman;C.M.Fraser https://doi.org/10.1038/nature01094
  8. Nature v.418 Sequence and analysis of chromosome 2 of Dictyostelium discoideum Glockner,G.;L.Eichinger;K.Szafranski;J.A.Pachebat;A.T.Bankier;P.H.Dear;R.Lehmann;C.Baumgart;G.Parra;J.F.Abril;R.Guigo;K.Kumpf;B.Tunggal;E.Cox;M.A.Quail;M.Platzer;A.Rosenthal;A.A.Noegel;B.G.Barrell;M.A.Rajandream;J.G.Williams;R.R.Kay;A.Kuspa;R.Gibbs;R.Sucgang;D.Muzny;B.Desany;K.Zeng;B.Zhu;P.de Jong;T.Dingermann;G.Gerisch;P.Philippsen;M.Schleicher;S.C.Schuster;T.Winckler https://doi.org/10.1038/nature00847
  9. Nature v.425 Genomics:six in seventh Grimwood,J.;J.Schmutz https://doi.org/10.1038/425775a
  10. Gene v.19 Lethality of palindromi DNA and its use in selection of recombinant plasmids Hagan,C.E.;G.J.Warren https://doi.org/10.1016/0378-1119(82)90199-8
  11. Hum.Mol.Genet. v.2 A Large inverted duplicated DNA region associated with an amplified oncogene in stably maintained in a YAC Hayashi,Y.;E.Heard;M.Fried https://doi.org/10.1093/hmg/2.2.133
  12. Biochem.Biophys.Res.Commun. v.284 Genomic organization of the She-related phosphotyrosine adapters and characterization of the full-length Sck/ShcB: specific association of p68-Sck/SheB Kojima,T.;Y.Yoshikawa;S.Takada;M.Sato;T.Nakamura;N.Takahashi;N.G.Copeland;D.J.Gilbert;N.A.Jenkins;N.Mori https://doi.org/10.1006/bbrc.2001.5080
  13. EMBO Reports v.4 Segments missing from the draft human genome sequence can be isolated by TAR cloning in yeast Kouprina,N.;S.H.;Leem,G.;Solomon,A.;Ly,M.;Koriabine,J.;Otstot,E.;Park,A.;Dutra,S.;Zhao,J.C.;Barrett;V.Larionov https://doi.org/10.1038/sj.embor.embor766
  14. Nucleic Acids Res. v.22 Recombination during transformation as a source of chimeric mammalian artificial chromosomes in yeast (YACs) Larionov,V.;N.Kouprina;N.Nikolaishvili;M.A.Resnick https://doi.org/10.1093/nar/22.20.4154
  15. Proc. Natl.Acad.Sci. v.93 Specific cloning of human DNA as yeast artificial chromosomes by transformation-associated recombination Larionov,V.;N.Kouprira;J.Graves;X.N.Chen;J.R.Korenberg;M.A.Resnick https://doi.org/10.1073/pnas.93.1.491
  16. Genet. Eng. Princ. Method v.21 Direct isolation of specific chromosomal regions and entire genes by TAR cloning Larionov,V.
  17. Genome Res. v.14 Closing the gaps on human chromosome 19 revealed genes with a high density of repetitive tandemly arrayed elements Leem,S.H.;N.Kouprina;J.,Grimwood;J.H.Kim;M.,Mullokandov;Y.H.Yoon;J.Y.Chae;J.,Morgan;S.,Lucas;P.,Richardson;C.,Detter;T.,Glavin;,E.,Rubin;J.C.Barrett;V.Larionov https://doi.org/10.1101/gr.1929904
  18. Gene v.58 Plasmid construction by homologous recombination in yeast Ma,H.;S.Kunes;P.J.Schatz;D.Botstein https://doi.org/10.1016/0378-1119(87)90376-3
  19. Molecular cloning a laboratory manual ManiatisT.;E.F.Fritsch;J.Sanbrook
  20. Nature v.305 Construction of artificial chromosomes in yeast Murray,A.W.;J.W.Szostak https://doi.org/10.1038/305189a0
  21. Genome Res. v.11 A bacterial artificial chromosome library for sequencing the complete human genome Osoegawa,K.;A.G.Mammoser;C.Wu;E.Frengen;C.Zeng;J.J.Catanese;P.J.de Jong
  22. Pan X, and D.R. Leach. 2000. The roles of mutS, sbcCD and recA in the propagation of TGG repeats in Escherichia coli. Nucleic Acids Res. 28, 3178-3184 https://doi.org/10.1093/nar/28.16.3178
  23. Nucleic Acids Res. v.28 The roles of mutS,sbcCD and recA in the propagation of TGG repeats in Escherichia coli Pan X;D.R.Leach https://doi.org/10.1093/nar/28.16.3178
  24. J. Mol. Biol. v.307 Non-clonability correlates with genome instability: a case of unique DNA region Razin,S.V.;E.S.Ioudinkova;E.Trifonov;K.Scherrer https://doi.org/10.1006/jmbi.2000.4372
  25. Nucleic Acids Res. v.23 Occurrence of potential cruciform and H-DNA forming sequences in genomic DNA Schroth,G.P.;P.S.Ho https://doi.org/10.1093/nar/23.11.1977
  26. Proc. Natl. Acad. Sci. v.86 Cloning and stable maintenance of 300-kilobase pair fragments of human DNA in Escherichia coli using an F-factor-based vector Shizuya,H.;B.Birren;U.J.Kim;V.Mancine;T.Slepak;Y.Tachiiri;M.Simon