Functional Expression of the Neurospora crassa coq-4 Gene in Saccharomyces cerevisiae.

Saccharomyces cerevisiae에서 Neurospora crassa coq-4 유전자의 기능적 발현

  • 김은정 (고신대학교 생명과학부) ;
  • 최상기 (순천대학교 생명과학) ;
  • 천재우 (순천향대학교 생명과학부 유전공학) ;
  • 오계헌 (순천향대학교 생명과학부 유전공학) ;
  • 이병욱 (고신대학교 생명과학부)
  • Published : 2004.06.01

Abstract

Coenzyme Q is a quinone derivative that acts as a lipid electron carrier in the respiratory chain located at mito-chondrial inner membrane in eucaryotes or plasma membrane in procaryotes and also functions as antioxidant. A putative Neurospora crassa coq-4 gene was cloned and functionally expressed in Saccharomyces cerevisiae coq4 mutant. Complemented S. cerevisaie mutant strain was able to produce coenzyme $Q_{6}$ and showed a normal growth rate. They also showed less sensitivities to polyunsaturated fatty acids such as linoleic acid or linolenic acid. The predicted sequence of N. crassa COQ4 is consisted of 347 amino acids with a molecular mass of 39.7 kDa and showed 35% identity and 52% similarity with that of S. cerevisiae.

Coenzyme Q는 지용성 퀴논 유도체로서 미토콘드리아의 내막과 원핵생명체의 세포막에 위치하는 전자전달계에서 전자 운반체로 이용되며 또한 항산화제의 기능도 갖는다. Coenzyme Q의 생합성에 관여하는 Saccharomyces cerevisiae의 coq4 유전자에 유사성을 나타내는 Neurospora crassa coq-4유전자를 클로닝하여 S. cerevisiae coq4 돌연변이체에서 기능적으로 발현하였다. 상보된 S. cerevisiae 균주들은 coenzyme $Q_{6}$의 생산능력을 회복하였으며 정상적인 성장률을 보였다. 또한 linoleic acid 및 linolenic acid와 같은 불포화지방산에 대한 낮은 감수성을 보였다. N. crassa의 COQ4 단백질은 39.7 kDa의 분자량을 갖는 347개의 아미노산으로 구성되어 있는 것으로 예상되며, S. cerevisiae의 Coq4p와 35%의 일치도 및 52%의 유사도를 보인다.

Keywords

References

  1. FEBS Lett. v.543 Complementation of Escherichia coli ubiF mutation by Caenorhabditis elegans CLK-1, a product of the longevity gene of the nematode worm Adachi,A.;N.Shinjyo;D.Fujita;H.Miyoshi;H.Amino;Y.Watanabe;K.Kita https://doi.org/10.1016/S0014-5793(03)00419-8
  2. Plant J. v.14 Cloning and functional expression of AtCOQ3,the Arabidopsis homologue of the yeast COQ3 gene, encoding a methyltransferase from plant mitochondria involved in ubiquinone biosynthesis Avelange Macherel,M.H.;J.Joyard https://doi.org/10.1046/j.1365-313X.1998.00109.x
  3. Arch. Biochem. Biophys. v.392 Yeast COQ4 encodes a mitochondrial protein required for coenzyme Q synthesis Belogrudov,G.I.;P.T.Lee;T.Janassen;A.Y.Hsu;P.Gin;C.F.Clarke https://doi.org/10.1006/abbi.2001.2448
  4. Free Radic.Biol.Med. v.29 Regulation of ubiquinone metabolism Dallner,G.;P.J.Sindelar https://doi.org/10.1016/S0891-5849(00)00307-5
  5. Proc. Nati. Acad. Sci. v.93 Enhanced sensitivity of ubiquinone-deficient mutants of Saccharomyces cerevisiae to products of autoxidized polyunsaturated fatty acids Do T.O.;J.R.Schultz;C.F.Clarke https://doi.org/10.1073/pnas.93.15.7534
  6. Proc. Natl. Acad. Sci. USA. v.98 Uncoupling proteins 2 and 3 are highly active H(+) transporters and highly nucleotide sensitive when activated by coenzyme Q(ubiquinone) Echtay,K.S.;E.Winkler;K.Frischmuth;M.Klingenberg
  7. Nature v.408 Coenzyme Q is an obligatory cofactor for uncoupling protein function Echtay,K.S.;E.Winkler;M.Klingenberg https://doi.org/10.1038/35046114
  8. Clin. Investig. v.71 no.Sup.8 Ubiquinol: an endogenous antioxidant in aerobic organisms Ernster,L;P.Forsmark Andree
  9. Yeast protocols Evans,I.H.
  10. FEBS Lett. v.285 Inhibition of lipid peroxidation by ubiquinol in submitochondrial particles in the absence of vitamin E Forsmark,P.;F.Aberg;B.Norling;K.Nordenbrand;G.Dallner;L.Ernster https://doi.org/10.1016/0014-5793(91)80720-N
  11. Biofactors v.9 Protective effect of exogenous coenzyme Q in rats subjected to partial hepatic ischemia and reperfusion Genova,M.L.;E.Bonacorsi;M.D'Aurelio;G.Formiggini;B.Nardo;S.Cuccomarino;P.Turi;M.M.Pich;G.Lenaz;C.Bovina https://doi.org/10.1002/biof.5520090234
  12. Chem. Res. Toxicol. v.12 Oxidation of ochratoxin A by an Fe-porphyrin system: model for enzymatic activation and DNA cleavage Gillman,L.G.;T.N.Clarke;R.A.Manderville https://doi.org/10.1021/tx9901074
  13. Biochem. Biophys. Acta v.1484 Genetic evidence for a multi-subunit complex in the O-methyltransferase steps of coenzyme Q biosynthesis Hsu,A.Y.;T.Q.Do;P.T.Lee;C.F.Clarke https://doi.org/10.1016/S1388-1981(00)00019-6
  14. Biochemistry v.35 Complementation of coq3 mutant yeast by mitochondrial targeting of the Escherichia coli UbiG polypeptide: evidence that UbiG catalyzes both O-methylation steps in ubiquinone biosynthesis Hsu,A.Y.;W.W.Poon;J.A.Shepherd;D.C.Myles;C.F.Clarke https://doi.org/10.1021/bi9602932
  15. Proc. Natl. Acad. Sci. v.98 A dietary source of coenzyme Q is essential for growth of long-lived Caenorhabditis elegans clk-1 mutants Jonassen,T;P.L.Larsen;C.F.Clarke https://doi.org/10.1073/pnas.021337498
  16. J. Biol. Chem. v.276 Dimer formation of octaprenyl-diphosphate synthase(IspB)is essential for chain length determination of ubiquinone Kainou,T.;K.Okada;K.Suzuki;T.Nakagawa;H.Matsuda;M.Kawamukai https://doi.org/10.1074/jbc.M007472200
  17. K.J.Life Science v.13 Restoration of Saccharomyces cerevisiae coq7 mutant by a Neurospora crassa gene Kim,E.J.;S.R.Kim;B.U.Lee https://doi.org/10.5352/JLS.2003.13.6.933
  18. Molecular Cloning: A Laboratory Manual. Maniatis,T.;E.F.Fritsch;J.Sambrook
  19. Biochem, Biophys. Acta. v.1127 Antioxidant role of cellular reduced coenzyme Q homologs and alpha-tocopherol in free radical-induced injury of hepatocytes isolated from rats fed diets with different vitamin E contents Matsura,T.;K.Yamada;T.Kawasaki https://doi.org/10.1016/0005-2760(92)90232-K
  20. Biochim. Biophys. Acta. v.1214 Reinvestigation of lipid peroxidation of linolenic acid Mlakar,A.;G.Spiteller https://doi.org/10.1016/0005-2760(94)90046-9
  21. Cold Spring Harb.Symp.Quant. Biol. v.51 Specific enzymatic amplifications of DNA in vitro: the polymerase chain reaction Mullis,K;F.Faloona;S.Scharf;R.Saiki;G.Horn;H.Erlich https://doi.org/10.1101/SQB.1986.051.01.032
  22. Whitehead Institute/MIT Center for Genome Research assembly version3 Neurospora Sequencing Project
  23. J. Bacteriol. v.179 Cloning of the sdsA gene encoding solanesyl diphosphate synthase from Rhodo bacter capsulatus and its functional expression in Escherichia coli and Saccharomyces cerevisiae Okada,K.;Y.Kamiya;X.Zhu;K.Sizuki;K.Tanaka;T.Nakagawa;H.Matsuda;M.Kawamukai https://doi.org/10.1128/jb.179.19.5992-5998.1997
  24. Mol. Aspects. Med. v.18 no.Sup. Sensitivity to treatment with polyunsaturated fatty acids is a general characteristic of the ubiquinone-deficient yeast coq mutants Poon,W.W.;T.Q.Do;B.N.Marbois;C.F.Clarke https://doi.org/10.1016/S0098-2997(97)00004-6
  25. J. Biol. Chem. v.277 Uptake of exogenous coenzyme Q and transport to mitochondria is required for bc1 complex stability in yeast coq mutants Santos Ocana,C.;T.Q.Do;S.Padilla;P.Navas;C.F.Clarke https://doi.org/10.1074/jbc.M112222200
  26. J. Biochem. v.121 Analysis of the decaprenyl diphosphate synthase(dps)gene in fission yeast suggests a role of ubiquinone as an antioxidant Suzuki K.;K Okada;Y.Kamiya;X.F.Zhu;T.Nakagawa;M.Kawamukai;H.Matsuda https://doi.org/10.1093/oxfordjournals.jbchem.a021614
  27. Acta. Biochim. Pol. v.47 Ubiquinone. Biosynthesis of quinone ring and its isoprenoid side chain. Intracellular localization Szkopinska,A.
  28. Microbiol. Rev. v.54 PET genes of Saccharomyces cerevisiae Tzagoloff A.;C.L.Dieckmann