Characterization of Enzymes Against Oxygen Derivatives Produced by Rhodobacter sphaeroides D-230

Rhodobacter sphaeroides D230이 생성하는 산소 유도체에 작용하는 효소의 특성

  • 김동식 (동아대학교 자연과학대학 화학 생명과학부 생명과학전공) ;
  • 이혜주 (동아대학교 자연과학대학 화학 생명과학부 생명과학전공)
  • Published : 2004.06.01

Abstract

The activities of enzymes that act on oxygen derivatives in Rhodobacter sphaeroides D-230 were investigated under various culture conditions. Intracellular SOD activity from the cells grown in aerobic or anaerobic culture conditions was highest at pH 7.0 and pH 8.0, respectively. On the other hand, extracellular SOD activity was highest at pH 6.0. Catalase activity was highest at neutral pH in both cases. Growth of R. sphaeroides D-230 in aerobic or anaerobic culture conditions was inhibited by methyl viologen. As R. sphaeroides D-230 was cul-tured aerobically, SOD activity was increased about 2-fold by addition of iron ion. But $Mn^+2$ had little effect on the SOD activity of R. sphaeroides D-230 grown in aerobically. NaCN, the inhibitor of Cu$.$Zn-SOD, did not inhibit SOD activity. But, $NaN_3$, the inhibitor of Mn-SOD, inhibited SOD activity in anaerobic cultures con-dition. Therefore, R. sphaeroides D-230 produce Mn-SOD in anaerobic condition, although Fe-Sod is produced in aerobic condition. The activity of catalase was induced by methyl viologen, however, extremely inhibited by NaCN and $NaN_3$.

산소의 존재 유ㆍ무 등과 같은 배양 환경의 변화에 따라 통성 혐기성 광합성 세균인 Rhodobacter sphaerodes B-230이 만들어내는 산소 유도체에 작용하는 효소의 특성을 조사한 결과 세포내 SOD는 호기적 배양에서는 초기 배양액의 pH가 7일 때, 혐기적 배양에서는pH 8일 때 활성이 높은 반면 세포외 방출 SOD는 두 배양조건에서 모두 약산성인 pH 6에서 활성이 높았다. Catalase는 두 조건 모두 중성 부근에서 최고의 활성을 보였으며, 산성 pH 부위에서는 급격히 활성이 낮아졌다. Mn-SOD의 활성 유도제인 methyl viologen을 첨가했을 때 두 조건 모두에서 성장의 저해를 보였으며, 배지에 철 이온을 첨가하여 배양 하였을 때 호기적 조건에서만 두 배 이상 활성이 증가되었다. 혐기적 조건에서는 전체적인 활성이 낮아 금속이온의 추가적인 첨가에도 더 이상 활성이 유도되지 않았다. Mn-SOD 활성 저해제인 $NaN_3$와 CuZn-SOD활성 저해제인 NaCN를 배양액에 첨가했을 때 NaCN은 두 가지 배양 조건에서 생성되는 SOD 모두를 저해하지 않았으며, $NaN_3$는 혐기적 배양조건에서만 0.3 mM 이상에서 급격한 SOD활성의 저해를 가져왔다. 따라서 Rhodobacter sphaeroides D-230도 혐기적 배양 조건에서 Mn-SOD가 생성되는 것을 확인할 수 있었으며,호기적 조건에서는 Fe-SOD가 생성되는 것을 확인할 수 있었다. Catalase의 활성도 두 가지 배양조건 모두에서 methy1 viologen에 의해 활성이 유도되었으며, NaCN와 $NaN_3$에 의해서 급격히 저해되었다.

Keywords

References

  1. Verlage Chemie Weinhein. v.1 Methods of Enzymatic Analysis Bergmyer,H.U.
  2. J. Bacteriol. v.131 Intracellular localization of the superoxide dismutase of E.coli ; Intracellular localization and function Britton,C.J.;I.Fridovich
  3. J. Biol. Chem. v.259 Anaerobic Biosythesis of the Manganese-containing Superoxide Dismutase in E. coli Camella,S.M.;H.M.Hassan
  4. Cell. v.70 A novel biological Messenger Charles J.Lwenstein;Solomon H.Synder Nitric OxIDE
  5. J. Biol. Chem. v.259 A hybrid superoxide dismutase containing both functional iron and manganese Clare,D.A.;J.Blum;I.Fridovich
  6. J. Exp. Bot. v.52 Leaf senscence: Correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase Dhindsa,R.S.;P.P.Dhindsa;T.A.Thorpe
  7. Adv. Enzymol. v.58 Superoxide dismutase Fridovich,I.
  8. Plant Physiol. v.59 Superoxide dismutase, I, Occurrence in higher plants Giannopolitis,C.N.;S.K.Ries https://doi.org/10.1104/pp.59.2.309
  9. Arch. Biochem. Biophys. v.220 Isolationo of iron-containing superoxide dismutase from Bacterioides fragilis: Reconstitution as a Mn-containing enzyme Gregory,E.M.;C.H.Dapper https://doi.org/10.1016/0003-9861(83)90413-7
  10. Biochem, J. v.184 Inhibition of the iron-catalyzed formation of hydroxyl radicals from superoxide and lipid peroxidation by desferrioxane Gutteridge,J.M.;R.Riohmond;B.Halliwell https://doi.org/10.1042/bj1840469
  11. Free radicals in Biology and Medicine Halliwell,B.;J.M.C.Gutteridge
  12. Proc. Natl. Acad. Sci. v.83 High-level espression of enzymatically active human CuZn-superoxide dismutase in E.coli Hartman,J.R.;T.Geller;Z.Yavin;D.Bartfeld;D.Kanner;H.Aviv;M.Gorecki https://doi.org/10.1073/pnas.83.19.7142
  13. J. Biol. Chem. v.252 Regulation of the Synthesis of Superoxide Dismutase in Escherichia coli Hassan,H.M.;I.Fridovich
  14. Proc. Acad. Sci. v.84 Isolation and sequence of complementary DNA encoding human extracellular superoxide dismutase Hjalmarsson,K.;S.I.Marklund;A.Engstrom;T.Edlund https://doi.org/10.1073/pnas.84.18.6340
  15. J. Biol. Chem. v.262 Purification an characterization of a catalase-peroxidase from the photosynthetic bacterium Rhodopseudomonas capsulata Hochman,A.;A.Shemesh
  16. Biochem. Biophys. Acta. v.1077 Purification an characterization of a catalase-peroxidase and a typical catalase from the Klebsiella pneumoniae Hochman,A.;I.Goldberg https://doi.org/10.1016/0167-4838(91)90544-A
  17. Korean J. Biotechnol. Bioeng. v.12 Production of δ-Aminolevulinic acid by Rhodospirillium rubrum DM Jin Sook Lee;In Ho Park;Hye Joo Lee
  18. Biochem. Biophys. Res. Commun. v.196 Conversion of nitroxyl to nitric oxide in biological systems: the role of physiological oxidants and relevance to the biological activity of HNO₃ John M.Fukuto;Adrian J.Hobbs;Louis J Ignarro https://doi.org/10.1006/bbrc.1993.2307
  19. J. Biol. Chem. v.256 Evidence for a Natural gene transfer from the ponyfish to its bioluminescent bacterial symbiont Photobacter leiognathi Joseph,P.;Jr.Martin;I.Fridovich
  20. Mol. Microbiol. v.27 Transcriptional and post-transcriptional regulation by nickel of sodN gene encoding nickel-containing superoxide dismutase from Streptomyces coelicolor Muller Kim E.J.;H.J.Chung;B.Suh;Y.C.Hah;J.H.Roe https://doi.org/10.1046/j.1365-2958.1998.00674.x
  21. Bull. of Basic Sciences. v.12 Identification of Photosynthetic bacterium producing α-aminolevulinic acid Lee,Hye Joo
  22. Kor. J. Microbiol. v.24 Characterization of a hydrogen evolving strain of Rhodopseudomonas sphaeroides Lee,H.J.
  23. Methods Enzymol. v.349 Nickel-containing superoxide dismutase Lee J.W.;J.H.Roe;S.O.Kang https://doi.org/10.1016/S0076-6879(02)49324-X
  24. J. Biol. Chem. v.193 Protein measurement with the folin phenol reagent Lowry,O.H.;N.J.Rosebrough;A.L.Farr;R.J.Randall
  25. Biochem. J. v.220 Properties of extracellular superoxide dismutase from human lung Marklund,S.L. https://doi.org/10.1042/bj2200269
  26. J. Biol. Chem. v.244 Superoxide dismutase McCord,J.M.;I.Fridovich
  27. J. Biol. Chem. v.247 The purification and properties of superoxide dismutase from Neurospora crassa Misra,H.P.;I.Fridovich
  28. Trichoplusia ni. Insect Biochem. v.882 Purification and properties of highly activive catalase from cabbage loopers Mitchell,M.J.;S.Ahmad;R.S.Pardini
  29. J. Bacteriol. v.176 rapid viability loss on exposure to air in a superoxide dismutase-deficient mutant of Porphyromonas gingivalis Nakayama,K. https://doi.org/10.1128/jb.176.7.1939-1943.1994
  30. Arch. Biochem. Biophys. v.94 Light-dependent utilization of organic compounds and photoproduction of moleculay hydrogen by photosynthetic bacteria;Relationship with nitrogen metabolism Ormerod,J.G.;K.S.Ormerod;H.Gest https://doi.org/10.1016/0003-9861(61)90073-X
  31. Superoxide and medicine Oyanagui,Y.
  32. Free Rad. Biol. Med. v.3 Effects of paraquat on the green alga Dunaliella salina: protection by the mimic of superoxide dismutase,desferal-Mn(IV) Rabinowitch,H.D.;C.T.Privalle;I.Fridovich https://doi.org/10.1016/S0891-5849(87)80007-2
  33. J. Ferment. Technol. v.65 Production of δ-aminolevulinic acid by photosynthetic bacteria Sasaki,K;I.Satoshi https://doi.org/10.1016/0385-6380(87)90109-9
  34. J. Bacteriol. v.177 Function and stationary phage induction of periplasmic copper-zinc superoxide dismutase and catalase/peroxidase in Caulobacter crescentus Schnell,S.;H.M.Steinman https://doi.org/10.1128/jb.177.20.5924-5929.1995
  35. J. Biol. Chem. v.253 The amino acid sequence of mangao superoxide dismutase from E. coli B Steinman,H.M.
  36. Proc. Natl. Acad. Sc. v.70 Sequence homologies among bacterial and mitochondrial superoxide dismutase Steinman,H.M.;R.L.Hill https://doi.org/10.1073/pnas.70.12.3725
  37. J. Bacteriol. v.162 Bacteriocuprein superoxide dismutase in Pseudomonas Steinman,H.M.
  38. J. Biol. Chem. v.262 Bacteriocuprein superoxide dismutase in Photobacterium leiognathi : Isolation and sequence of the gene and evidence for a precursor form Steinman,H.M.
  39. Handbook of enzyme Inhibitor Zollner,H.