Development of In situ PCR Method Using Primer Polymers

프라이머 중합체를 이용한 원위치 중합효소 연쇄반응 In situ PCR 방법의 개발

  • Published : 2004.06.01

Abstract

Reduction in the leakage of the amplified PCR product out of cell is required for effective in situ PCR. For this purpose, primers with complementary tail sequences at their 5' sides were utilized to synthesize high molecular weight PCR products, but it is time-consuming and causes deterioration of cellular appearance with many PCR cycles. Therefore, it is required to optimize the PCR condition with minimal PCR cycles. To achieve the pur-pose, primer polymers were made without the target DNA in tube from nonspecific amplification with tailed primers and treated onto the fixed Molt/LAV cells on the glass slide for the 20 cycle-in situ PCR, in which the appropriate target signals were observed for the possible use of primer polymers in in situ PCR.

효과적인 원위치 중합효소 연쇄반응 (In situ PCR)을 위해서는 증폭된 PCR 산물의 세포외 유출을 감소시켜야 한다. 이를 위한 한 방법으로 거대분자 PCR 산물을 합성시키기 위한 5'쪽에 서로 상보적인 꼬리서열을 가진 프라이머(꼬리 프라이머; tailed primer)가 사용되었으나 많은 PCR 횟수로 인해 시간의 낭비와 세포조직의 형태보존성이 저하되는 문제가 발생하였다. 따라서 PCR 조건을 가능한 최적화시키고, 최소의 PCR 횟수로써 세포외 유출을 막을 수 없는 방법이 필요하게 되었다. 이러한 방법의 일환으로 꼬리 프라이머를 이용하여 PCR 튜브 속에서 목표 핵산없이 프라이머 중합체(primer polymers)의 형성을 유도하였고, 이를 유리 슬라이드위에 고정시킨 Molt/LAV 세포들에 처리하여 20 회의 짧은 시간에서도 적절한 탐침을 할 수 있게 되었다. 이로 인해 프라이머 중합체의 원위치 중합효소 연쇄반응에서의 사용가능성을 타진하였다.

Keywords

References

  1. Mol. Biotechnol. v.19 Strategies for signal amplification in nucleic acid detection Andras,S.C.;J.B.Power;E.C.Cocking;M.R.Davey https://doi.org/10.1385/MB:19:1:029
  2. Kor. J. Microbiol. v.39 In situ PCR on the glass slide using the conventional DNA thermal cycler Aub,C.K.;J.S.Chang;J.Y.Lee
  3. J. Immunol. Meth. v.158 Polymerase chain reaction in situ: intracellular amplification and detection of HIV-1 proviral DNA and specific genes Bagasra,O.;T.Seshamma;R.J.Pomerantz https://doi.org/10.1016/0022-1759(93)90265-9
  4. J. Histochem. Cytochem. v.40 Intracellular amplification of proviral DNA in tissue sections using the polymerase chain reaction Chiu,L.P.;S.H.Cohen;D.W.Morris;G.W.Jordan https://doi.org/10.1177/40.3.1313061
  5. Proc. Natl. Acad. Sci. v.90 Analysis of human immunodeficiency virus-infected tissues by amplification and in situ hybridization reveals latent and permixxive infections at single-cell resolution Embretson,J.;M.Zupancic;J.Beneke;M.Till;S.Wolinsky;J.L.Ribas;A.Burke;A.T.Haase https://doi.org/10.1073/pnas.90.1.357
  6. J. Infect. Dis v.187 Human herpesvirus 6 genome and antigen in acute multiple sclerosis lesions Goodman,A.D.;D.J.Mock;J.M.Powers;J.V.Baker;B.M.Blumberg https://doi.org/10.1086/368172
  7. BioTechniques v.15 PCR In Situ: A rapid alternative to in situ hybridization for mapping short, low copy number sequences without isotopes Gosden,G.;D.Hanratty
  8. Proc. Natl. Acad. Sci. v.83 Detection of lymphocytes expressing human T-lymphotro-pic virus type III in lymph nodes and peripheral blood from infected individuals by in situ hybridization Harper,M.E.;L.M.Marselle;R.C.Gallo;F.Wong Staal https://doi.org/10.1073/pnas.83.3.772
  9. J. Virol. v.57 Differential susceptibility to the acquired immunodeficiency syndrome retrovirus in cloned cells of human leukemic T-cell line Molt-4 Kikukawa,R.;Y.Koyanagi;S.Harada;N.Kobayashi;M.Hatanaka;N.Yamamoto
  10. Lancet v.2 Detection of HIV DNA in infants and children by means of the polymerase chain reaction Laure,F.;V.Courgnaud;C.Rouzioux;S.Blanche;F.Veber;M.Burgard;C.Jacomet;C.Griscelli;C.Brechot
  11. J. Microbiol. v.40 Evaluation of several parameters of in situ polymerase chain reaction(ISPCR)to reduce the leakage of amplificants from the cells Lee,J.Y.;J.K.Auh;G.W.Jordan
  12. Kor. J. Microbiol. v.37 Methods of in situ PCR to retain the amplification products inside the cells Lee,J.Y.
  13. Virchows Archiv. B. Cell. Pathol. v.64 In situ polymerase chain reaction. An overview of methods,applications and limitations of a new molecular technique. Komminoth,P.;A.A.Long https://doi.org/10.1007/BF02915097
  14. Diagn. Mol. Pathol. v.1 In situ polymerase chain reaction detection of viral DNA Komminoth,P.;A.A.Long;R.Ray;H.J.Wolfe https://doi.org/10.1097/00019606-199203000-00014
  15. Molecular Cloning: A laboratory manual.(2nd ed.) Southem transfer Maniatis,T.;E.F.Fritsch;J.Sambrook
  16. Methods Enzymol. v.155 Specific synthesis of DNA in vitro via a polymerase catalyzed chain reaction Mullis,K.B.;F.Faloona https://doi.org/10.1016/0076-6879(87)55023-6
  17. J. Histochem. Cytochem. v.49 Co-labeling using in situ PCR Nuovo,G.J. https://doi.org/10.1177/002215540104901101
  18. Diagn. Mol. Pathol. v.9 In situ strand displacement amplification: An improved technique for the detection of low copy nucleic acids Nuovo,G.J. https://doi.org/10.1097/00019606-200012000-00004
  19. Am. J. Pathol. v.139 An improved technique for the in situ detection of DNA after polymerase chain reaction amplification Nuovo,G.J.;F.Gallery;P.MacConnell;J.Becker;W.Bloch
  20. Infection v.19 In situ amplification of single copy gene segments in individual cells by the polymerase chain reaction Spann,W.;K.Pachmann;H.Zabnienska;A.Pielmeier;B.Emmerich https://doi.org/10.1007/BF01644953
  21. Micro. Pathog. v.11 In situ amplification of visna virus DNA in tissue sections reveals a reservoir of latently infected cells Staskus,K.A.;L.Couch;P.Bitterman;E.F.Retzel;M.Zupancic;J.List;A.T.Haase https://doi.org/10.1016/0882-4010(91)90095-R
  22. Cell. Biol. Biol. Lett. v.7 A useful protocol for in situ RT-PCR on plant tissues Urbanczyk Wochniak,E.;M.Filipecki;Z.Przybecki