DOI QR코드

DOI QR Code

일축가압/스크린인쇄 공정에 의해 제조된 음극지지형 SOFC의 출력특성

Power Generating Characteristics of Anode-Supported SOFC fabricated by Uni-Axial Pressing and Screen Printing

  • 정화영 (한국과학기술연구원 나노재료연구센터) ;
  • 노태욱 (한국과학기술연구원 나노재료연구센) ;
  • 김주선 (한국과학기술연구원 나노재료연구센) ;
  • 이해원 (한국과학기술연구원 나노재료연구센) ;
  • 고행진 (현대-기아 연구개발본부 연료전지개발) ;
  • 이기춘 (현대-기아 연구개발본부 연료전지개발) ;
  • 이종호 (한국과학기술연구원 나노재료연구센터)
  • 발행 : 2004.06.01

초록

음극지지형 SOFC의 성능을 향상시키기 위해 단전지 제조공정을 개선하고 그 출력특성을 평가하였다. 액상응결 공정(Liquid Condensation Process : LCP)과 일축가압성형공정을 통하여 NiO/YSZ 복합체 음극기판을 제조하고 위에 YSZ 전해질을 스크린 인쇄한 후 140$0^{\circ}C$에서 3시간동안 동시소결하여 음극/전해질 기판을 제조하였다. 또한 LSM/YSZ 양극층은 임피던스 분석을 통해 분극저항이 최소가 되는 조성 및 열처리 조건을 선택하여 스크린 인쇄법을 이용해 구성하였고 이러한 적층공정을 거쳐 최종적으로 5${\times}$5와 l0${\times}$10 $\textrm{cm}^2$ 크기의 단전지를 제조하였다. 제조된 단전지의 출력특성을 측정한 결과 5${\times}$5와 10${\times}$10 단전지는 80$0^{\circ}C$에서 약 0.45W/$\textrm{cm}^2$ 와 0.22 W/$\textrm{cm}^2$의 최대출력밀도를 각각 나타내어 선행연구에서 기존공정으로 제조된 단전지에 비해 2배 이상 향상된 좋은 성능을 나타내었다.

To enhance the performance of anode-supported SOFC, single cell fabrication procedure was changed for better and resulting power generating characteristics of single cell were investigated. Liquid condensation process was employed for the granulation of NiO/YSZ powder mixture and the produced powder granules were compacted into anode green substrate by uni-axial pressing. YSZ electrolyte was printed on green substrate via screen-printing method and co-fired at 1400$^{\circ}C$ for 3 h. LSM/YSZ composite cathode of which the composition and heat treatment condition was adjusted to minimize the polarization#resistance with AC-impedance spectroscopy, was screen printed. The final single cell size from this multi-step procedure was 5${\times}$5 $\textrm{cm}^2$ and 10${\times}$10 $\textrm{cm}^2$. The maximum power densities of 5${\times}$5 and 10${\times}$10 single cells were about 0.45 W/$\textrm{cm}^2$ and 0.22 W/$\textrm{cm}^2$ at 800$^{\circ}C$, which are two times superior than those from single cells fabricated by the conventional process in previous our work.

키워드

참고문헌

  1. J. Am. Ceram. Soc. v.76 no.3 Ceramic Fuel Cells N. Q. Minh https://doi.org/10.1111/j.1151-2916.1993.tb03645.x
  2. Science and Technology of Ceramic Fuel Cells N. Q. Minh;T. Takahashi
  3. Solid State Ioncis v.99 Electrode Supported Solid Oxide Fuel Cells : Electrolyte Films Prepared by DC Magnetron Sputtering P. K. Srivastava;T. Quach;Y. Y. Duan;R. Donelson;S. P. Jiang;F. T. Ciacchi;S. P. S.Badwal https://doi.org/10.1016/S0167-2738(97)00248-8
  4. J. Electrochem. Soc. v.144 no.5 Low-Temperature Solid Oxide Fuel Cells Utilizing Thin Bilayer Electrolytes T. Tsai;E. Perry;S.Barnett https://doi.org/10.1149/1.1837635
  5. Solid State Ionics v.148 Quantitative Analysis of Microstructure and its Related Electrical Property of SOFC Anode, Ni-YSZ Cermet J.-H. Lee;H. Moon;H. W. Lee;J. Kim;J. D. Kim;K. H. Yoon https://doi.org/10.1016/S0167-2738(02)00050-4
  6. J. Kor. Ceram. Soc. v.37 no.9 Power Generating Characteristics and Long Term Stability of the Anode Supporting Type SOFC J.-H. Lee;G. D. Kim;Y. B. Sohn;H.-W. Lee;S. W. Kim;H. S. Song;G. H. Kim
  7. J. Kor. Ceram. Soc. v.37 no.12 Correlation between the Microstructure and the Electrical Conductivity of SOFC Anode, Ni-YSZ: II.Temporal Variation H. Moon;H.-W. Lee;J.-H. Lee;K.-H. Yoon
  8. Solid State Ionics v.158 The Impact of Anode Microstructure on the Power Generating Characteristics of SOFC J.-H. Lee;J. W. Heo;D. S. Lee;J. Kim;G. H. Kim;H. W. Lee;H. S. Song;J. H. Moon https://doi.org/10.1016/S0167-2738(02)00915-3
  9. J. Am. Ceram. Soc. v.83 no.7 Novel Powder-Processing Methods for Advanced Ceramics W. M. Sigmund;N. S. Bell;L. Bergstroem https://doi.org/10.1111/j.1151-2916.2000.tb01432.x
  10. J. Am. Ceram. Soc. v.83 no.10 Colloidal Processing of Ceramics J. A. Lewis https://doi.org/10.1111/j.1151-2916.2000.tb01560.x
  11. Solid State Ionics v.132 Properties of Ni/YSZ Cermet as Anode for SOFC H. Koide;Y. Someya;T. Yoshida;T. Maruyama https://doi.org/10.1016/S0167-2738(00)00652-4
  12. J. Mater. Res. v.12 Material Characterization in Support of the Development of an Anode Substarate for Solid Oxide Fuel Cells D. Simwonis;A. Naoumidis;F. F. Dias;J. Linke;A. Morpoulou https://doi.org/10.1557/JMR.1997.0207
  13. Solid State Ionics v.57 LaMn$O_3$ Air Cathodes Containing Zr$O_2$ Electrolyte for High Temperature Solid Oxide Fuel Cells T. Kenjo;M. Nishiya https://doi.org/10.1016/0167-2738(92)90161-H
  14. J. Mater. Sci. v.36 Functionally Graded Cathodes for Solid Oxide Fuel Cells N. T. Hart;N. P. Brandon;M. J. Day;J. E. Shemilt https://doi.org/10.1023/A:1004857104328
  15. J. Kor. Ceram. Soc. v.34 no.10 Preparation of (La,Sr)Mn$O_3$ Powder by Glycine-Nitrate Process Using Oxide as Starting Materials J. D. Kim;j. W. Moon;G. D. Kim;C. E. Kim
  16. J. Kor. Ceram. Soc. v.37 no.3 The Effect of Paricle Size and Ratio of LSM-YSZ Powders on SOFC Cathod Properties J. K. Kim;G. D. Kim;J. A. Park
  17. J. Kor. Ceram. Soc. v.38 no.5 Effect of YSZ Particle Size and Sintering Temperature on the Microstructure and Impedance Preperty of Ni-YSZ Anode for Solid Oxide Fuel Cell J. W. Moon;G. D. Kim;K. T. Lee;H. L. Lee
  18. J. Electrochem. Soc. v.144 no.1 Electrode Properties of Sr-Doped LaMn$O_3$ on Yttria-Stabilized Zir-conia. II. Electrode Kinetics F. H. van Heuveln;H. J. M. Bouwmeester https://doi.org/10.1149/1.1837375
  19. Solid State Ionics v.110 Oxygen Transfer Processes in (La,Sr)Mn$O_3/Y_2O_3$-Stabilized Zr$O-2$ Cathodes: an Impedance Spectroscopy Study E. P. Murray;T. Tsai;S. A. Barnett https://doi.org/10.1016/S0167-2738(98)00142-8
  20. Solid State Ionics v.143 Characterization of LSM-YSZ Composite Electrode by AC Impedance Spectroscopy J. K. Kim;G. D. Kim;J. W. Moon;Y. I. Park;H. W. Lee;K. Kobayashi;M. Nagai;C. E. Kim https://doi.org/10.1016/S0167-2738(01)00877-3