Biological Characteristics of Anodic Electrolyzed Water

산성전리수의 생물학적 특성

  • 김윤경 (순천향대학교 생명과학부) ;
  • 민병술 (순천향대학교 생명과학) ;
  • 민중기 (순천향대학교 생명과학) ;
  • 이종권 (순천향대학교 신소재화학공학) ;
  • 이윤배 (순천향대학교 신소재화학공학) ;
  • 류근걸 (순천향대학교 신소재화학공학) ;
  • 이미영 (순천향대학교 생명과학부)
  • Published : 2004.06.01

Abstract

Biological characteristics of anodic electrolyzed water were investigated in this study. Linear DNAs which were incubated at $4^\circ{C}$ and $25^\circ{C}$ for 10 mins in the anodic electrolyzed water were degraded about 40% and 50%, respectively. But the DNA was amplified pretty well without any degradation through polymerase chain reaction in the presence of anodic electrolyzed water. Protein degradation hardly occurred in the distilled water during entire incubation time of 7 days, while protein began to be degraded from 4 days in the anodic electrolyzed water. Rice seeds could germinate in the distilled water and anodic electrolyzed water with the same germination ratio, however, the anodic electrolyzed water inhibited the growth of roots and total length of rice seedlings in the soil. Anodic electrolyzed water did not affect the growth curve and cell number of marine alga significantly. The anodic electrolyzed water inhibited the browning of potato by inactivating 50% of polyphenol oxidase activity.

본 연구에서는 산성전리수의 일반적인 생물학적 특성을 간략히 살펴보았다. 직선형 DNA를 산성전리수에서 $4^\circ{C}$$25^\circ{C}$에서 약 10분간 반응시킨 결과 각각 40%와 50%의 DNA가 분해되었다. 그러나 산성전리수를 사용한 고온에서의 DNA 증폭반응 실험에서 DNA 분해없이 정상적으로 DNA증폭반응이 일어났다. 산성전리수가 단백질의 안정도에 미치는 영향을 살펴본 결과 증류수에서는 총 7일 동안의 반응시간동안 단백질의 분해가 거의 일어나지 않았으나, 산성전리수에서는 제4일에서부터 단백질의 분해가 본격적으로 일어나기 시작하였다. 산성전리수에서 볍씨를 발아시켜 본 결과 증류수에서와 동일한 발아율을 나타냈으며, 산성전리수는 배양토에서 벼 유묘의 뿌리의 길이와 총 길이를 억제시켰다. 산성전리수는 해양 미세조류의 성장곡선과 세포수에는 거의 영향을 미치지 않았다. 또한 산성전리수는 polyphenoloxidase의 비활성을 약 50% 억제시킴으로써 감자의 갈변을 억제하였다.

Keywords

References

  1. 순천향대학교 석사학위논문 환경친화적 전리수를 이용한 반도체 세정 연구 강병두
  2. 폐수처리공학 김동민
  3. 추계 한국청정기술학회 학술발표회 논문집 FT-IR을 이용한 TFT-LCD 제작 공정에서의 PR잔류농도 분석 김봉석;김우혁;이미영;이윤배;이종권;류근걸
  4. 추계 한국청정기술학회 학술발표회 논문집 산성전리수가 DNA와 세포성장에 미치는 영향 김윤경;민병술;이윤배;이종권;류근걸;이미영
  5. 추계 한국청정기술학회 학술발표회 논문집 산성전리수에 의한 미생물제어 이미영;박혜린;김인걸;주한승;이종권;이윤배;류근걸
  6. 청정기술의 현황과 전망 박원훈
  7. 상하수도 공학 양상현
  8. Jpn. J. Conserv. Dent. v.42 Available chlorine concentration, pH and oxidation-reduction potential of high oxidation potential water and bactericidal effects Abe S
  9. Jpn. J. Conserv. Dent. v.43 Bacterial contamination of dental unit water line Araki K;K Usui;Y. Maikuma;N Kurosaki
  10. Appl. Envion. Microbiol. v.62 Multiparametric analysis of waterline contamination in dental units Barbeau J;R Tanguay;E Faucher;C Avezard;L Trudel;L Cote;AP Prevost
  11. J. Food Prot. v.66 Chemical and irradiation treatments for killing Escherichia coli O157:H7 on alfalfa, radish, and mung bean seeds Bari ML;E Nazuka;Y Sabina;S Todoriki;K Isshiki
  12. Anal. Biochem. v.72 A rapid and sensitive for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding Bardford MM https://doi.org/10.1016/0003-2697(76)90527-3
  13. Foods and Food Ingredients J. v.177 Use of sterilized electrolzed water in food sanitation systems Doi T;R Kato;M Tomita
  14. J. Food. Prot. v.66 Stability of electrolyed oxidizing water and its efficacy against cell suspensions of Salmonella typhimurium and Listeria monocytogenes Fabrizio KA;CN Cutter
  15. Environ. Control in Biol v.36 Fundamental studies on crop disease control by spraying electrolyzed strongly acidic water Fujiwara K;M Iimoto;M Fujiwara https://doi.org/10.2525/ecb1963.36.137
  16. Can. J. Microbiol. v.8 Studies of marine planktonic diatome. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Guillard RRL;JH Ryther https://doi.org/10.1139/m62-029
  17. Biosci. Biotechnol. Biochem. v.67 Decomposition of ethylene, a flower-senescene hormone, with electrolyzed anode water Kazuo H;Y Keiko https://doi.org/10.1271/bbb.67.790
  18. J. Food Prot. v.66 Efficacy of electrolyzed oxidizing water in inactivating Salmonella on alfalfa seeds and sprouts Kim C;YC Hung;RE Brackett;CS Lin
  19. J. Biochem. Mol. Biol. v.29 Purification of the glycosylated polyphenol oxidase from potato tuber Kwon DY;WY Kim
  20. Nature v.227 Cleavage of structural proteins during the assembly of the head of bacteriophage T4 Laemmli UK https://doi.org/10.1038/227680a0
  21. Cell Transplantation v.8 Effectiveness of acidic oxidative potential water in preventing bacterial infection in islet transplantation Miyamoto M;K Inoue;Y Gu
  22. Odontology v.84 Toxicity of electrolyzed strong acid aqueous solution-subacute toxicity test and effect on oral tissue in rats Mori Y;S Komatsu;Y Hata
  23. Kansensyogaku Zasshi v.74 Bacteriocidal effect of electrolyzed node water on Helicobacter pylori Nakao M;K Yokota;K Oguma;K Takai
  24. Materi. Res. Soc. v.17 Electrolyzed water as an alternative for environmentally-benign semiconductor cleaning Ryoo KK;B Kang;S Sumida https://doi.org/10.1557/JMR.2002.0194
  25. Int. J. Food Microbiol. v.15 Treatment of Escherichia coli O157:H7 inoculated alfalfa seeds and sprouts with electrolyzed oxidizing water Sharma RR;A Demirci
  26. J. Dent. Med. v.37 Killing action of virus, bacteria and fungus by oxidative potential water induced by electrolysis Shimizu Y;T Furusawa
  27. Biochem. Bioph. Res. Co. v.234 Electrolyzed-reduced water scavenges active oxygen species and protects DNA from oxidative damage Shirahata S;S Kabayama;M Nakano;T Miura;K Kusumoto;M Gotoh;H Hayashi;S Otsubo;S Morisawa;Y Katakura https://doi.org/10.1006/bbrc.1997.6622
  28. Kankyo Kal en v.14 Study on the bacteriocidal effect of a slightly alkaline electrolyzed solution Takahashi K;M Arita;K Takai;Y Kanemasa
  29. Compendium v.17 Microbial contamination of dental unit waterlines: current preventive measures and emerging option Williams JF;N Andrews;JI Santiago
  30. J. Food Sci. v.43 Isoenzymes of polyphenol oxidase from high L-Dapa containing velvet beam Zenin CT;YK Park https://doi.org/10.1111/j.1365-2621.1978.tb02379.x