DOI QR코드

DOI QR Code

White Ginseng Saponin Upregulated the Production of -TNFTNF-α, IL-1β and NO in Primary Cultures of Mixed Glial Cells

고려인삼에 의한 신경면역 및 염증반응 조절: 백삼사포닌에 의한 교세포에서의 TNF-α, IL-1β 및 NO 생성 증가

  • 성정훈 (고려대학교 의과대학 약리학교실) ;
  • 최동희 (고려대학교 의과대학 약리학교실) ;
  • 김동훈 (고려대학교 의과대학 약리학교실) ;
  • 전보권 (고려대학교 의과대학 약리학교실) ;
  • 최상현 (고려대학교 의과대학 약리학교실)
  • Published : 2004.06.01

Abstract

Glial cells such as astrocytes and microglial cells are the main source of proinflammatory cytokines and nitric oxide(NO) in the central nervous system, which exert neuroimmune and inflammatory functions and other various neurobiologic effects. Though Panax ginseng C.A. Meyer has been known to strengthen the body's defence mechanisms and also to maintain the homeostasis in the central nervous system, the effects of Panax ginseng on the production of immune and inflammatory mediators have not been studied well in the brain. Therefore, this study was designed to study the effects of ginseng saponins on the production of proinflammatory cytokines and NO in the primary cultures of mixed glial cells. White ginseng saponin, 200-500 $\mu$g/ml, showed significant cytotoxicity after 72 hrs and increased TNF-$\alpha$, IL-$\beta$, and NO production. Lower doses of 50-100 $\mu\textrm{g}$/ml showed little cytotoxicity until 72 hrs and also increased the production of TNF-$\alpha$, IL-1$\beta$, and NO. Triple immune staining showed that white ginseng saponin, 200$\mu\textrm{g}$/ml for 72 ks, induced stellation of astrocytes and iNOS expression exclusively in microglial cells. Taken together, the white ginseng saponin increased the production of proinflammatory cytokines such as TNF-$\alpha$ and IL-1$\beta$, and induced iNOS expression and NO production in mixed glial cell cultures, which may be ascribed to the enhancement of central immune responses and the regulation of inflammatory reactions by Panax ginseng.

수천 년 동안 전통적 약제로 사용되어온 고려인삼은 중추신경계의 항상성을 유지하고 면역기능을 강화하는 효능을 나타내는 것으로 알려져 있다. 신경계질환의 진행이 대부분 염증 또는 면역반응을 수반하며, 이로 인하여 손상된 신경세포의 수복과정에 교세포 기원의 매개물질들이 기여하므로, 교세포에서의 cytokine 및 NO생성에 대한 연구는 신경기능과 신경면역기능의 조절 뿐 아니라 신경계 질환에 대한 연구의 초석이라고 할 수 있다. 따라서 본 연구에서는 고려인삼의 신경면역 및 염증반응 조절효과에 대하여 연구하고자 하였으며, 이를 위하여 흰쥐 대뇌피질의 교세포를 일차배양하며 고려인삼사포닌 분획을 처치하여 TNF-$\alpha$, IL-1$\beta$, 및 NO의 생성변동을 연구하였다. 백삼 사포닌은 50-500$\mu\textrm{g}$/ml 용량에서 TNF-$\alpha$와 IL-1$\beta$ 생성을 증가시켰으며, 미세교세포에서 iNOS 발현 및 NO생성을 유도하였고 성상세포의 stellation을 초래하였다. 특히 백삼사포닌 50-100 $\mu\textrm{g}$/ml는 세포독성을 거의 나타내지 않았으므로 이들 용량에 의한 교세포의 적절한 활성화가 중추신경계 면역기능 증가 및 염증반응 조절에 기여할 것으로 생각된다.

Keywords

References

  1. Norenberg, M. D.: Immunology of the nervous system. p.173-199. Oxford University Press, New York (1997)
  2. Perry, V. H. and Gordon, S.: Immunology of the nervous system. p.155-172. Oxford University Press, New York (1997)
  3. Benveniste, E. N.: Immunology of the nervous system. p.419-459. Oxford University Press, New York (1997)
  4. Benveniste, E. N.: Cytokine actions in the central nervous system. Cytokine Growth Factor Rev. 9, 259-275 (1998) https://doi.org/10.1016/S1359-6101(98)00015-X
  5. Murphy, S., Simmons, M. L., Agullo, L., Garcia, A., Feinstein, D. L., Galea, E., Reis, D. J., Minc-Golomb, D. and Schwartz, J. P.: Synthesis of nitric oxide in CNS glial cells. Trends Neurosci. 16, 323-328 (1993) https://doi.org/10.1016/0166-2236(93)90109-Y
  6. Murphy, S. : Production of nitric oxide by glial cells: regulation and potential roles in the CNS. Glia 29, 1-13 (2000) https://doi.org/10.1002/(SICI)1098-1136(20000101)29:1<1::AID-GLIA1>3.0.CO;2-N
  7. Cho, S. H., Choi, S. H., Choi, J. W., Kim, D. H., Shin, K. H., Chun, Y. S. and Chun, B. G. : Effect of Panax ginseng on latency of passive avoidance response and neuronal damage of hippocampus. Korea J. Physiol. Pharmacol. 1, 345-353 (1997)
  8. Gillis, C. N. : Panax ginseng pharmacology: a nitric oxide link? Biochem. Pharmacol. 54, 1-8 (1997) https://doi.org/10.1016/S0006-2952(97)00193-7
  9. McCarthy, K. D. and de Vellis, J.: Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J. Cell Biol. 85, 890-902 (1980) https://doi.org/10.1083/jcb.85.3.890
  10. Giulian, D. and Baker, T. J.: Characterization of ameboid microglia isolated from developing mammalian brain. J. Neurosci. 6, 2163-2178 (1986)
  11. Ventura, R. and Harris, K. M.: Three-dimensional relationships between hippocampal synapses and astrocytes. J. Neurosci. 19, 6897-6906 (1999)
  12. Gasser, U. E. and Hatten, M. E. : Neuron-glia interactions of rat hippocampal cells in vitro: glial-guided neuronal migration and neuronal regulation of glial differentiation. J. Neurosci. 10, 1276-1285 (1990)
  13. Mi, H., Haeberle, H. and Barres, B. A. : Induction of astrocyte differentiation by endothelial cells. J. Neurosci. 21, 1538-1547 (2001)
  14. Mason, C. A., Edmondson, J. C. and Hatten, M. E. : The extending astroglial process: development of glial cell shape, the growing tip, and interactions with neurons. J. Neurosci. 8, 3124-3134 (1988)
  15. Janzer, R. C. and Raff, M. C. : Astrocytes induce blood-brain barrier properties in endothelial cells. Nature 325, 253-257 (1987) https://doi.org/10.1038/325253a0
  16. Ramakers, G. J. A. and Moolenaar, W. H. : Regulation of astrocyte morphology by RhoA and lysophosphatidic acid. Exp. Cell Res. 245, 252-262 (1998) https://doi.org/10.1006/excr.1998.4224
  17. Cechin, S. R., Gottfried, C., Prestes, C. C., Wofchuk, S. T., Andrighetti, L. and Rodnight, R. : Astrocyte stellation in saline media lacking bicarbonate: possible relation to intracellular pH and tyrosine phosphorylation. Brain Res. 946, 12-23 (2002) https://doi.org/10.1016/S0006-8993(02)02819-6
  18. Eng, L. F. and Ghirnikar, R. S. : GFAP and astrogliosis. Brain Pathol. 4, 229-237 (1994) https://doi.org/10.1111/j.1750-3639.1994.tb00838.x
  19. Norton, W. T., Aquino, D. A., Hozuni, I., Chiu, F. C. and Brosnan, C. F. : Quantitative aspects of reactive gliosis: a review. Neurochem. Res. 17, 877-885 (1992) https://doi.org/10.1007/BF00993263
  20. Isobe, I., Maeno, Y., Nagao, M., Iwasa, M., Koyama, H., Seko-Nakamura, Y. and Monma-Ohtaki, J. : Cytoplasmic vacuolation in cultured rat astrocytes induced by an organophosphorus agent requires extracellular signal-regulated kinase activation. Toxicol. Appl. Pharmacol. 193, 383-392 (2003) https://doi.org/10.1016/j.taap.2003.08.010
  21. Possel, H., Noack, H., Putzke, J., Wolf, G. and Sies, H. : Selective upregulation of inducible nitric oxide synthase(iNOS) by lipopolysaccharide(LPS) and cytokines in microglia: in vitro and in vivo studies. Glia 32, 51-59 (2000) https://doi.org/10.1002/1098-1136(200010)32:1<51::AID-GLIA50>3.0.CO;2-4
  22. Choi, S. H., Choi, D. H., Song, K. S., Shin, K. H. and Chun, B. G. : Zaprinast, an inhibitor of cGMP-selective phosphodiesterases, enhances the secretion of TNF-alpha and IL-Ibeta and the expression of iNOS and MHC class II molecules in rat microglial cells. J. Neurosci. Res. 67, 411-421 (2002) https://doi.org/10.1002/jnr.10102
  23. Kim, N. D., Kang, S. Y., Park, J. H. and Schini-Kerth, V. B. : Ginsenoside $Rg_3$ mediates endothelium-dependent relaxation in response to ginsenosides in rat aorta: role of $K^+$ channels. Eur. J. Pharmacol. 367, 41-49 (1999) https://doi.org/10.1016/S0014-2999(98)00898-X
  24. Ndkajima, S., Uchiyama, Y., Yoshida, K., Mizukawa, H. and Haruki, E. : The effects of ginseng radix rubra on human vascular endothelial cells. Am. J. Chin. Med. 26, 365-373 (1998) https://doi.org/10.1142/S0192415X98000403
  25. Kang, S. Y., Schini-Kerth, V. B. and Kim, N. D. : Ginsenosides of the protopanaxatriol group cause endothelium-dependent relaxation in the rat aorta. Life Sci. 56, 1577-1586 (1995) https://doi.org/10.1016/0024-3205(95)00124-O
  26. Chen, X. : Cardiovascular protection by ginsenosides and their nitric oxide releasing action. Clin. Exp. Pharmacol. Physiol. 23, 728-732 (1996) https://doi.org/10.1111/j.1440-1681.1996.tb01767.x
  27. Jeon, B. H., Kim, C. S., Kim, H. S., Park, J. B. Nam, K. Y. and Chang, S. J. : Effect of Korean red ginseng on blood pressure and nitric oxide production. Acta. Pharmacol. Sin. 21, 1095-1100 (2000)
  28. Kim, H., Chen, X., Gillis, C. N. : Ginsenosides protect pulmonary vascular endothelium against free radical-induced injury. Biochem. Biophys. Res. Commun. 189, 670-676 (1992) https://doi.org/10.1016/0006-291X(92)92253-T
  29. Han, S. W. and Kim, H. : Ginsenosides stimulate endogenous production of nitric oxide in rat kidney. Int. J. Biochem. Cell Biol. 28, 573-580 (1996) https://doi.org/10.1016/1357-2725(95)00163-8
  30. Kim, D. H., Jung, J. S., Suh, H. W., Huh, S. O., Min, S. K., Son, B. K., Park, J. H., Kim, N. D., Kim, Y. H. and Song, D. K. : Inhibition of stress-induced plasma corticosterone levels by ginsenosides in mice: involvement of nitric oxide. Neuroreport 9, 2261-2264 (1998) https://doi.org/10.1097/00001756-199807130-00021
  31. Kim, Y. C., Kim, S. R., Markelonis, G. J. and Oh, T. H. : Ginsenosides $Rb_1$ and $Rg_3$ protect cultured rat cortical cells from glutamate-induced neurodegeneration. J. Neurosci. Res. 53, 426-432 (1998) https://doi.org/10.1002/(SICI)1097-4547(19980815)53:4<426::AID-JNR4>3.0.CO;2-8
  32. Chen, X., Salwinski, S. and Lee, T. J. : Extracts of Ginkgo biloba and ginsenosides exert cerebral vasorelaxation via a nitric oxide pathway. Clin. Exp. Pharmacol. Physiol. 24, 958-959 (1997) https://doi.org/10.1111/j.1440-1681.1997.tb02727.x
  33. Fan, Z. H., Isobe, K., Kiuchi, K. and Nakashima, I. : Enhancement of nitric oxide production from activated macrophages by a purified form of ginsenoside $(Rg_1)$. Am. J. Chin. Med. 23, 279-287 (1995) https://doi.org/10.1142/S0192415X9500033X
  34. Park, Y. C., Lee, C. H., Kang, H. S., Kim, K. W., Chung, H. T. and Kim, H. D. : Ginsenoside-$Rh_1$ and $Rh_2$ inhibit the induction of nitric oxide synthesis in murine peritoneal macrophages. Biochem. Mol. Biol. Int. 40, 751-757 (1996)
  35. Kim, K. H., Lee, Y. S., Jung, I. S., Park, S. Y., Chung, H. Y., Lee, I. R. and Yun, Y. S. : Acidic polysaccharide from Panax ginseng, ginsan, induces Th1 cell and macrophage cytokines and generates LAK cells in synergy with rIL-2. Planta Med. 64, 110-115 (1998) https://doi.org/10.1055/s-2006-957385
  36. Lee, Y. S., Chung, I. S., Lee, I. R., Kim, K. H., Hong. W. S. and Yun, Y. S. : Activation of multiple effector pathways of immune system by the antineoplastic immunostimulator acidic polysaccharide ginsan isolated from Panax ginseng. Anticancer Res. 17, 323-331 (1997)
  37. Sonoda, Y., Kasahara, T., Mukaida, N., Shimizu, N., Tomoda, M. and Takeda, T. : Stimulation of interleukin-8 production by acidic polysaccharides from the root of Panax ginseng. Immunopharmacology 38, 287-294 (1998) https://doi.org/10.1016/S0162-3109(97)00091-X
  38. Yun, Y. S., Lee, Y. S., Jo, S. K. and Jung, I. S. : Inhibition of autochthonous tumor by ethanol insoluble fractin from Panax ginseng as an immunomodulator. Planta Med. 59, 521-524 (1993) https://doi.org/10.1055/s-2006-959752