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VECTOR VARIATIONAL INEQUALITY PROBLEMS WITH
GENERALIZED C(z)-L-PSEUDOMONOTONE SET-VALUED
MAPPINGS

BYUNG-S00 LEE AND MEE-KWANG KANG

ABSTRACT. In this paper, we introduce new monotone concepts for set-valued map-
pings, called generalized C{z)-L-pseudomonotonicity and weakly C(z)-L-pseudo-
monotonicity. And we obtain generalized Minty-type lemma and the existence of so-
lutions to vector variational inequality problems for weakly C(z)-L-pseudomonotone
set-valued mappings, which generalizes and extends some results of Konnov & Yao
[11], Yu & Yao [20], and others Chen & Yang {6], Lai & Yao {12], Lee, Kim, Lee &
Cho [16] and Lin, Yang & Yao [18].

1. INTRODUCTION

Let X and Y be real Banach spaces with norms || ||x and || ||y, respectively,
and L(X,Y) the space of all bounded linear mappings from X into Y. A nonempty
subset P of X is called a convex cone if \P+ P C P forall A > 0. A cone P is
said to be pointed if P N (—P) = {0}, and proper if it is properly contained in X.
The partial order < on X induced by a pointed cone P is defined as z < y if and
only if y —z € P for z, y € X, in which case P is called a positive cone in X. A
linear order is a partial order induced by a convex cone. An ordered Banach space
(X, P) consists of a real Banach space X and a pointed convex cone P with the
linear order induced by P. The weak order £ on an ordered Banach space (X, P)
with non-empty interior int P of P is defined as z £ y if only if y — = ¢ int P for
z,y € X. Let T : K — 2LX.Y) be a set-valued mapping from a nonempty convex
subset K of X into 2L(XY) and C : K — 2Y a set-valued mapping such that C(z)

is a closed convex solid cone of Y.
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After Chen & Cheng [4] proposed the infinite version of finite dimensional vector
variational inequality problems introduced by Giannessi [9], and applied it to vector
optimization problems, there have been intensive researches on the solutions to vec-
tor variational inequality problems and their applications, see Baiocchi & Capelo [1],
Chang, Thompson & Yuan (2], Chen [3], Chen & Cheng [4], Chen & Craven [5], Chen
& Yang [6], Giannessi (9], Kinderlehrer & Stampacchia [10], Konnov & Yao [11], Lai
& Yao [12], Lee & Lee [13], Lee & Lee [14, 15], Lee, Kim, Lee & Cho [16], Lee, Kim,
Lee & Yen [17], Lin, Yang & Yao [18] and Yu & Yao [20).

Especially, Konnov & Yao [11] considered the existence of solutions to the follow-
ing generalized vector variational inequality problems (GVVIP) for C(z)-pseudo-
monotone set-valued mappings;

(GVVIP). Find Z € K such that for y € K there exists ¢ € T(Z) such that
(t,y —z) ¢ —int C(Z).

Lin, Yang & Yao [18] also considered the existence of solutions to the (GVVIP)
under the assumption of the generalized C(z)-pseudomonotonicity and the general-
ized hemicontinuity of the defining mapping T

In this paper, we introduce two generalized monotone concepts which can be
called as a weakly C(z)-L-pseudomonotonicity and a generalized C(z)-L-pseudo-
monotonicity for set-valued mappings.

Next, we consider a generalized Minty-type lemma, and the existence of solutions
to the following generalized vector variational inequality problems (LGVVIP) for

weakly and generalized C(z)-L-pseudomonotone set-valued mappings, which is a
generalized form of (GVVIP).

(LGVVIP). Find a y € K such that for each z € K, there exists a z € seg[z,y)
such that for each w € seg[z, y] there exists a ¢t € T'(w) satisfying

(t,z — w) ¢ —int C(w),
where the line segement segfz,y) denotes the set {r =tz + (1 —t)y:t € (0,1]}.

2. SOME MONOTONE SET-VALUED MAPPINGS

Definition 2.1. Let X and Y be Banach spaces, K a nonempty convex subset of
X and T : K — 21(X.Y) 3 mapping. Let C : K — 2Y be a set-valued mapping such
that for each =z € K, C(z) is a closed convex pointed cone with C(z) # 0.
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(1) T is C(z)-pseudomonotone on K if for every pair of points z, y € K and for all
te T(z), t' € T(y), we have

(', —y) ¢ —int C(y) implies (t,z —y) ¢ —int C(y).

(2) T is C(z)-L-pseudomonotone on K if for every pair of points z, y € K, there
exists a point z € seg(z,y) such that for each point w € seg[z,y) and for all
t € T(z), t' € T(w), we have

(t' )z —w) ¢ —int C(w) implies (t,z —w) ¢ —int C(w).

(3) T is weakly C(z)-pseudomonotone on K if for every pair of points z, y € K and
for every t' € T(y), we have

(t,z—y) ¢ —int C(y) implies (t,z—~y) ¢ —intC(y) for some t € T(z).

(4) T is weakly C(z)-L-pseudomonotone on K if for every pair of points z, y € K,
there exists a point z € seg[z,y) such that for each point w € seg(z,y) and for
every t' € T(w), we have

(t',z —w) ¢ —int C(w) implies (t,z —w) ¢ —int C(w) for some t € T'(x).

(5) (Lin, Yang & Yao [18)], Schaible [19]) T is generalized C(z)-pseudomonotone on
K if, for every pair of points z, y € K, there exists t' € T'(y) such that

(thz—y) ¢ -intC(y)

implies that there exists ¢ € T(z) such that (t,z — y) ¢ —int C(y).

(6) T is generalized C(xz)-L-pseudomonotone on K if, for every pair of points z,
y € K, there exists z € segz,y) such that for each point w € seg|z,y), there
exists t' € T(w) such that {¢,z — w) ¢ —int C(w) implies that there exists
t € T(z) such that (t,z — w) ¢ ~int C(w).

Definition 2.2. Let K be a nonempty convex subset of a Banach space X. A set-
valued mapping T : K — 2L(XY) j5 said to be hemicontinuous on K if its restriction
to any line segments seg|z, y] in K is upper semicontinuous with respect to the weak
topology on L(X,Y).
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3. MINTY-TYPE LEMMAS

Now we consider Minty-type lemmas for generalized C(z)-L-pseudomonotone
and weakly C(z)-L-pseudomonotone set-valued mappings which are useful on the
consideration of the existence of solutions to (LGVVIP).

Lemma 3.1. Let X, Y be Banach spaces and K a nonempty convex subset of X.
Let T : K — 2HXY) be  generalized C(z)-L-pseudomonotone and hemicontinuous
set-valued mapping.

Then the following are equivalent;

(a) For every pair of distinct points x,y € K, there exists a z € seg[z,y) such that
for each w € seg|z,y), there exists a t € T(w) satisfying

(t,z — w) ¢ —int C(w).

(b) For every pair of distinct points z,y € K, there exists a z € seg[z,y) such that
for each w € seg[z,y), there exists a t € T'(z) satisfying

(t,z — w) ¢ —int C(w).

Proof. (a)==(b) Let = and y be distinct points of K. Suppose that there exists a
21 € seg|z,y) such that for each w € seg[z1,y), there exists a t' € T'(w) satisfying

(t,z —w) ¢ —int C(w).

Since T : K — 2MXY) s generalized C(z)-L-pseudomonotone, there exists a
23 € seg[z,y) such that for each w € seg[22,y) there exists t' € T'(w) such that

(t',x —w) ¢ —int C(w)

implies that there exists ¢t € Tz such that (¢,z — w) ¢ —int C(w).

Choose z € K with seg(z,y) = seg[z21,y) Nseg[22,y). Then for each w € seg|z,y),
there exists a t € T'(z), we have (t,z — w) ¢ —int C(w).

(b)==(a) Let z be such a point in (b). Suppose that there exists w € seg[z,y)
such that for all ¢’ € T'(w),

',z —w) € —int C(w).
1

1 . -
For eachn € N, set w, = -+ |1 — —) w. Then, by the hemicontinuity of T at
n n

w, there exists ng € N such that (¢,z —w) € —int C(w) for all t € T'(wy), n > no.

Since



GENERALIZED C(z)-L-PSEUDOMONOTONE SET-VALUED MAPPINGS 159

1

E(t,x—w) € —int C(w) for n >ng and
1 1 1

—(m—w)=—x+(1——)w—w=wn——w,

n n n

we have
(t,wn —w) € —int C(w) for all t € T(wy), n > np.

This contradicts (b). O

As corollaries, we can obtain the following Minty-type lemmas for weakly C(z)-
L-pseudomonotone and for weakly C(z)-pseudomonotone set-valued mappings, and
weakly C(z)-pseudomonotone single-valued mappings.

Lemma 3.2. Let X, Y be Banach spaces and K a nonempty conver subset of X.
Let T : K — 2LXY) be g weakly C(z)-L-pseudomonotone and hemicontinuous set-
valued mapping.

Then the following are egquivalent,

(a) For every pair of distinct points z, y € K, there exists a z € seg[z,y) such that
for each w € segz,y) and t' € T(w), we have

(t',z —w) ¢ —int C(w).

(b) For every pair of distinct points z, y € K, there ezxists a z € seg[z,y) such that
for each w € seg[z,y) and for allt € T(x)

(t,z —w) ¢ —int C(w).
Proof. By the similar method to Lemma 3.1, it can be proved. a

Corollary 3.3 (Generalized Linearization Lemma: Konnov & Yao [11]). Let X, Y
be Banach spaces and K be a nonempty convex subset of X. Let T : K — 2L(X.)Y)
be a weakly C(z)-pseudomonotone and hemicontinuous set-valued mappings.

Then the following are equivalent;

(I) There ezists an z € K such that for y € K, there ezists a t' € T(z) such that
(t',y —z) ¢ —int C(z).

(II) There exists an € K such that for y € K, there exists a t” € T(y) such that
",y —z) ¢ —int C(x).
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4. EXISTENCE RESULTS OF SOLUTIONS

Let K be a nonempty subset of a topological vector space X. Then a set-valued
mapping F : K — 2% is said to be a Knaster-Kuratowski-Mazurkiewicz mapping
(in short, KKM-mapping) if for each nonempty finite subset N of K, coN C F(N),
where coN is the convex hull of N.

Lemma 4.1 (Dugundji & Granas (7]). A Banach space X 1is reflexive if and only
if every closed convex bounded subset of X is weakly compact.

The following F-KKM theorem in Fan {8] is essential in our results.

Theorem 4.2. Let X be a topological vector space, K C X an arbitrary subset, and
G : K — 2% a KKM-mapping. If all the sets G(z) are closed in X and if at least
one is compact, then ({G(z) :z € K} # 0.

For weakly C(z)- L-pseudomonotone set-valued mappings, we obtain the following
existence result of solutions to (LGVVIP).

Theorem 4.3. Let X be a real reflexive Banach space, Y a real Banach space,
and K a nonempty closed convez bounded subset of X. Let C : X — 2Y be a set-
valued mapping such that for each x € K, C(z) is a proper closed conver cone
with int C(z) # 0 and W : K — 2Y be a set-valued mapping defined by W (zx) =
Y\(~int C(z)) such that the graph Gr(W) := {(z,y)|z € K, y € W(z)} of W is
weakly closed in X x Y. Let T : K — 2LXY) be ¢ weakly C(z)-L-pseudomonotone
and hemicontinuous mapping. Then (LGVVIP) is solvable.

Proof. Define a set-valued mapping F : K — 2% by

F(z) = {y € K : there exists a z € seg [z,y) such that for each w € seg[z,y)
and for some t € T(w), {t,z — w) ¢ —int C(w)}.

Note that F(z) is a nonempty set for each z € K, since € F(z). The proof is
divided into the following five steps.

(i) F is a KKM-mapping on K. Assume to the contrary, there exist
T1,L2y...,Lm € K
such that
m
CO{J,‘]_,:Ez, EEEE! xm} ¢ U F(IB,)

i=1
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Put
m m
w = Zaiwi ¢ U F(z;)
i=1 i=1

for all nonnegative real numbers a;, 1 < 7 < m, with

Then for all t € T(w), (t,z; —w) € —intC(w), ¢ = 1, 2, ---, m. Since
m10; =1 and each (t,z; — w) is an element of the convex set —int C(w),
o oyt z; — w) belongs to —int C(w).
On the other hand,

m

D oyt @i —w) = <t,§a,~x,~ —w> = (t,w —w) = 0.

i=1
Therefore 0 € —int C(w) and so 0 € int C'(w), which means C(w) = Y. This
is a contradiction to the fact that C(w) is a proper cone of Y. Thus F is a
KKM mapping.
Define a mapping G : K — 2% by

G(z) = {y € K : there exists a z € seg[z,y) such that for each

w € seg(z,y) and for all ¢t € T(z), (t,z — w) ¢ —int C(w)},
then G(z) is weakly closed for each z € K. In fact, suppose that {yqa}tacr is a
net in G(z) weakly converging to y in K. Then for each a € I, there exists

a Zq € seg[z,yo) such that for each wy € seg[zq,ya) and for all t € T(z),
(t,z — wqa) ¢ —int C(wq). Choose a real net {kq} in {0, 1] such that
Za = koZ + (1 — ka)Ya-
Without loss of generality, from the compactness of [0,1] we can assume that
there exists a limit kg = lirr} ko in [0,1]. Hence {24} weakly converges to
[213

29 = koz + (1 — ko)y in K. If ky = 1, since seg[zp, y) is empty it was done. Let
w € seglzp,y) and let w = szg + (1 — s)y for some s € (0,1]. For each a € I,
let wo = $2q + (1 — $)ya, then (¢, — wa) ¢ —int C(w,) for all t € T(w) and
we — w weakly in K. Hence for ¢t € T(z)

t, @ —w) = (t,z — li

{t;2 —w) = (t,z — limwa)

= lim(t,z — .
it = we)



162 BYUNG-S00 LEE AND MEE-KWANG KANG

Therefore the net {(waq, (t,2 — wa))}o in the graph Gr(W) of W weakly con-
verges to (w, (t,z — w)) in X x Y. Since Gr(W) is weakly closed in X x Y,
(w, (t,z — w)) belongs to Gr(W), that is, ({,z — w) ¢ —intC(w). Thus
y € G(z), which implies that G(z) is weakly closed.

(iii) G is a KKM-mapping and (,cx F(z) = ,cx G(z). Indeed, since T is weakly
C(z)-L-pseudomonotone, F(z) C G(z) for z € K, and then G is a KKM-
mapping. By Lemma 3.2, (| ,cx F(z) = N e G().

(iv) Nzek F(z) is nonempty. In fact, since X is a reflexive Banach space, by Lemma
4.1, K is weakly compact and the weakly closed subset G(z) of K is also weakly
compact. From F-KKM theorem, it follows that () .z G(z) # 0. Therefore
by the step (iii), (\,cx F(z) # 0, that is, there exists y € K such that for each
z € K, there exists z € seg[z,y) such that for each w € seg(z,y)

(t,z —w) ¢ —int C(w) for some ¢ e T(w).

(v) If y € Nyek F(z), then y is a solution of (LGVVIP). Let y € [|,¢x F(z) and
z € K, then we show that (t,z —y) ¢ —int C(y) for some t € T(y). Assume
to the contrary, for all t € T'(y),

(t,z —y) € —int C(y).
Choose a sequence {y,} such that
_1 (]
Yn = nm n Y
for n € N. Since T is hemicontinuous there exists ng € N such that for n > nyg
(tn,z —y) € —int C(y) forall t, € T(yn).

On the other hand, since y € F(z), there exists n; € N such that if n > n; then
there exists ¢, € T'(yn) satisfying the following;

(tn, — yn) ¢ —int C(yn).
Since yn — y in K and (tn,Z — yn) — (tn,z — y) weakly in Y, we have

(yn, (tn, T — yn)) — (y, (tn,x — y)) weakly in X x Y.

Therefore (y, (tn,z — y)) € Gr(W), which is weakly closed in X x Y. Hence
(tn,z—y) ¢ —int C(y). This is a contradiction to the fact that for n = max{ng,n1}
(tn,x —y) € —int C(y) for all ¢, € T(yn).

Thus there exists ¢t € T'(y) such that (¢,z —y) ¢ —int C(y). 0O
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For generalized C(z)-L-pseudomonotone set-valued mappings, we obtain the fol-
lowing existence result of solutions to the (LGVVIP).

Theorem 4.4. Let T : K — 2LXY) be a generalized C(z)-L-pseudomonotone
and hemicontinuous mapping, and other conditions be same as Theorem 4.3. Then
(LGVVIP) is also solvable.

Proof. Define a set valued mapping F as that in the proof of Theorem 4.3, which is
a KKM-mapping. Define a mapping G : K — 2K by

G(z) = {y € K : there exist a z € seg[z, y) such that for each w € seg[z,y) and
for some t € T(z), (t,z — w) ¢ —int C(w)}.

To prove that G(z) is weakly closed in K for each z € X, it suffices to follow the
step (ii) of Theorem 4.3 provided that “for all ¢ € T'(z)” is replaced by “for some
teT(z)".
For step(iii), by the part (a)=>(b) of Lemma 3.1, F(z) C G(z) for £ € K and
so G is a KKM-mapping. And Lemma 3.1 implies that
N F(z) = [ G(=).
zeK zeK

If we choose the same step (iv) and step (v) of Theorem 4.3, the proof is complete.
a

As a main corollary, we obtain the following main result of Konnov & Yao [11].

Theorem 4.5 (Konnov & Yao [11]). Let X and Y be real Banach spaces. Let
K be a nonempty weakly compact convez subset of X. Let C : K — 2Y be such
that for each z € K, C(z) is a proper closed convex cone with int C(z) # 0, and
W : K — 2Y be defined by W(z) = Y\(— int C(z)) such that the graph Gr(W) of W
is weakly closed in X x Y. Suppose that T : K — 21XY) is C(z)-pseudomonotone
and hemicontinuous on K. Suppose also that T has nonempty values. Then, there
exists a solution to the (GVVIP).

We note that T is said to be generalized v-coercive on K if there exists a weakly
compact subset B of X and yo € BN K, such that, for every ¢t € T'(z),

(t,yo—z) € —int C(z) forall ze€ K\B.

We obtain the following corollary.
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Theorem 4.6 (Konnov & Yao [11]). Let X, Y, C, W, and Gr(W) be the same as
in Theorem 4.5. Let K be a nonempty closed conver subset of X. Suppose that T :
K — 2UXY) 45 C(z)-pseudomonotone, generalized v-coercive, and hemicontinuous
on K. Suppose also that T has nonempty values. Then, the (GVVIP) has a solution.

We obtain the following main result of Lin, Yang & Yao [18] as corollaries.

Theorem 4.7 (Lin, Yang & Yao [18]). Let X and Y be real Banach space. Let K
be a nonempty weakly compact convez subset of X. Let C : K — 2¥ be such that,
for each x € K, C(z) is a proper closed conver solid cone; and let W : K — 2Y
be defined by W(z) = Y\(—int C(z)), such that the graph Gr(W) of W is weakly
closed in X xY. If T : K — 2KXY) s generalized C(x)-pseudomonotone, nonempty
compact-valued, and hemicontinuous on K, then (GVVIP) has a solution.

Corollary 4.8 (Lin, Yang & Yao [18]). Let X and Y be real Banach space. Let K
be a nonempty weakly compact convez subset of X. Let C : K — 2¥ be such that,
for each z € K, C(z) is a proper closed convex solid cone; and let W : K — 2¥
be defined by W(z) = Y\(—int C(z)), such that the graph Gr(W) of W is weakly
closed in X XY . If T : K — 24XY) is generalized C(x)-pseudomonotone, nonempty
compact-valued, and upper semicontinuous from line segments in K, then (GVVIP)

has a solution.
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HILBERT-SCHMIDT INTERPOLATION ON Az =y IN A
TRIDIAGONAL ALGEBRA ALGC

YounG So0 Jo AND Joo Ho KANG

ABSTRACT. Given vectors ¢ and y in a separable Hilbert space H, an interpolating
operator is a bounded operator A such that Az = y. In this article, we investigate
Hilbert-Schmidt interpolation problems for vectors in a tridiagonal algebra. We
show the following: Let £ be a subspace lattice acting on a separable complex
Hilbert space H and let z = (z;) and y = (y:) be vectors in H. Then the following
are equivalent:

(1) There exists a Hilbert-Schmidt operator A = (ai;) in AlgL such that Az = y.

(2) There is a bounded sequence {a»} in C such that 3°°° | |an|? < 0o and

Y1 = o1 + a2

Y2k = C4k—-1T2k
Y2k+1 = O4kT2k + Q4k+1T2k+1 + Qdk+1T2k+2
for k € N.

1. INTRODUCTION

Let H be a Hilbert space and A be a subalgebra of the algebra B(#) of all
operators acting on H. Suppose that X and Y are specified, not necessarily in the
algebra. Under what conditions can we expect there to be a solution of the operator
equation AX =Y, where the operator A is required to lie in A? We refer to such
a question as an interpolation problem. The ‘n-vector interpolation problem’, asks
for an operator A such that Az; = y; for fixed finite collections {z1,z2,...,Zs}
and {y1,¥2,...,Yn}. The n-vector interpolation problem was considered for a C*-
algebra U by Kadison [6). In case U is a nest algebra, the (one-vector) interpolation
problem was solved by Lance [7]: his result was extended by Hopenwasser [2] to the
case that U is a CSL-algebra. Munch [8] obtained conditions for interpolation in
case A is required to lie in the ideal of Hilbert-Schmidt operators in a nest algebra.
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Hopenwasser [3] once again extended the interpolation condition to the ideal of
Hilbert-Schmidt operators in a CSL-algebra. Hopenwasser’s paper also contains a
sufficient condition for interpolation n-vectors, although necessity was not proved in
that paper.

We establish some notations and conventions. A commutative subspace lattice
L, or CSL L is a strongly closed lattice of pairwise-commuting projections acting
on a Hilbert space #. We assume that the projections 0 and I lie in £. We usually
identify projections and their ranges, so that it makes sense to speak of an operator
as leaving a projection invariant. If £ is CSL, AlgC is called a CSL-algebra. The
symbol AlgL is the algebra of all bounded operators on # that leave invariant all
the projections in £. Let  and y be two vectors in a Hilbert space #. Then (z,y)
means the inner product of the vectors z and y. Let M be a subset of a Hilbert
space M. Then M means the closure of M and M the orthogonal complement of
M. Let N be the set of all natural numbers and let C be the set of all complex

numbers.

2. RESULTS

Let # be a separable complex Hilbert space with a fixed orthonormal basis
{e1,e2,...}. Let xy1,z2,...,Tn be vectors in H. Then [z1,z2,...,Z,) means the
closed subspace generated by the vectors z1,z2,...,Z,. Let £ be the subspace lat-
tice generated by the subspaces [e2x1], [€2k—1, €2k, €2k+1] (K = 1,2,...). Then the
algebra AlgCl is called a tridiagonal algebra which was introduced by Gilfeather &
Larson [1]. These algebras have been found to be useful counterexample to a number
of plausible conjectures.

Let A be the algebra consisting of all bounded operators acting on H of the form

with respect to the orthonormal basis {e1, €2, ...}, where all non-starred entries are
zero. It is easy to see that Algl = A.

We consider interpolation problems for the above tridiagonal algebra AlgL.
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Theorem 1. Let AlgL be the tridiagonal algebra on a Hilbert space H and let
z = (z;) and y = (yi) be vectors in H. Then the following are equivalent:

(1) There exzists a Hilbert-Schmidt operator A = (ai;) in AlgL such that Az =y.
(2) There is a bounded sequence {an} in C such that 3 o, |an|? < 0o and

Y1 = 121 + a2y

Yok = C4k—122k

Y2k+1 = Q4kTok + Q4k+12T2k+1 + O4kt2T2k42 for k € N.

Proof. Suppose that A is a Hilbert-Schmidt operator A = (a;;) in Algl such that

Az =y. Let ap = a;j for n =i+ j — 1 and {e,} is the standard orthonormal basis
for H. Since A is Hilbert-Schmidt, 3, || Ae;||? < co. Hence

e = 303 I(deie) P

o0 o0
= (Aesk_1,eak-1) + ) _ (Aeak, (ear_1 + €2k + €2k11))
k=1 k=1

Il

[o ]
loak—3l> + D (losr—2l* + laar1)* + |oarl?)
k=1

Ms T1s

[ak[2 < 00.

x>
Il
-

Since Az =y,
Y1 = 01Z1 + T

Yok = Q4fp—1T2k

Yok+1 = O4kTok + Oap+1T2k+1 + Q4k+1T2k+2-

Conversely, assume that there is a bounded sequence {a,} in C such that

o
> Joml? < 00
n=1
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and

Y1 = a1T1 + 022

Yok = Q4k—1T2k

Yok+1 = QqpT2k + Q4k+1T2k+1 + O4k+2T2k+2-

Let A be a matrix with a;; = ap for i + j — 1 = n. Then A is a Hilbert-Schmidt
operator. Since

Y1 = 171 + a2

Yok = C4k—1T2k

Yok+1 = Q4pTop + QUk+1T2k+1 + Odk+2T2k+2,

Az =y. 0

Theorem 2. Let AlgL be the tridiagonal algebra on a Hilbert space H and let

z; = (xg-i)) and y; = (yj(i)) be vectors in H for i = 1,2,...,n. Then the follow-

ing are equivalent:

(1) There exists a Hilbert-Schmidt operator A = (ai;) in AlgL such that Ax; = y;
foralli=1,2... n.

(2) There is a bounded sequence {an} in C such that Y_o2 , |aa|? < 0o and

(®)

y@ =ai1z;’ + agmg)

yézk) = a4k_1xff’

y§2+1 = a4k$g,2 + a4k+1z§’,2+1 + Ot4k+2-’1’5g,2+2 for k €N,

foralli=1,2,...,n.

Proof. Suppose that A is a Hilbert-Schmidt operator A = (a;;) in AlgL such that
Az; = y; for all i = 1,2,...,n. Let o = a;5 for n =i+ j — 1 and {e,} is the
standard orthonormal basis for H. Since A is Hilbert-Schmidt, 3, || de;||? < oo.
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Hence

3 el = 303 [(des, )

Il

[o ¢}
(Aegk—1,€2k-1) + Z (Aegk, (e2x—1 + €2k + €2k41))
k=1

o0
loak—sl* + ) (lask—2f* + laar1[* + loaxl?)
k=1

i

Il
M T T -

o |? < 0.

E
|
p—

So 3°%°  |an|? < 0. Since Az; =y; foralli=1,2,...,n,
yg) (i) (1)

= a1y + 02Ty

ys) = agp 125y

ygk)+1 = a4kw§;3 + a4k+1””gzlg+1 + a4k+2“’g2+2 for k € N,

foralli=1,2,...,n
Conversely, assume that there is a bounded sequence {ay,} in C such that

[o o]
Z Iaklz < 0
k=1

and

() O] ()

Y=oz’ + azy

Yok = cak-123)

yézk)+1 = a4k-”5§13 + a4k+1w§’,3+1 + a4k+2mg,3+2 for k € N,

foralli=1,2,...,n. Let A be a matrix with a;; = a, fori+j—1=n. Then A is
a Hilbert-Schmidt operator. Since
yg i) (@) (4)

=17, + oy

) = s 1o

y;c)-i-l = a4k$£>k) + a4k+1$§2+1 + a4k+2$§2+2 for k € N,
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foralli=1,2,...,n, Az; = y;. a
By the similar way with the above, we have the following.

Theorem 3. Let AlgL be the tridiagonal algebra on a Hilbert space H and let
T, = (:z:g-z)) and y; = (yJ(-z)) be vectors in H for i = 1,2,.... Then the following
are equivalent:

(1) There exists a Hilbert-Schmidt operator A = (ai;) in Algl such that Az; = y;
foralli=1,2,....
(2) There is a bounded sequence {an} in C such that 3 o2 ; |as|? < oo and

ygi) = ala:(li) + a23:(2i)

B _ (9 (2) (3) keN
Yskt1 = QakTop + Oak4+1Top 1 + O4k42Top o for k € N,

foralli=1,2,....
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