Performance Analysis of UWB Systems in the Presence of Timing Jitter

  • Guvenc, Ismail (Electrical Engineering Department, University of South Florida) ;
  • Arslan, Huseyin (Electrical Engineering Department, University of South Florida)
  • Published : 2004.06.01

Abstract

In this paper, performances of different ultra-wideband (UWB) modulation schemes in the presence of timing jitter are evaluated and compared. Static and Rayleigh fading channels are considered. For fading channels, Oat and dispersive channels are assumed. First, bit error rate (BER) performances for each case are derived for a fixed value of timing jitter. Later, a uniform distribution of jitter is assumed to evaluate the performance of the system, and the theoretical results are verified by computer simulations. Finger estimation error is treated as timing jitter and an appropriate model is generated. Furthermore, a worst case distribution that provides an upper bound on the system performance is presented and compared with other distributions. Effects of timing jitter on systems employing different pulse shapes are analyzed to show the dependency of UWB performance on pulse shape. Although our analysis assumes uniform timing jitter, our framework can be used to evaluate the BER performance for any given probability distribution function of the jitter.

Keywords

References

  1. P. R. Trischitta and E. L. Varma, Jitter in Digital Transmission Systems,1st ed. Norwood, MA: Artech House Inc., 1989
  2. S. Haykin, Communication Systems, 3rd ed. New York: John Wiley and Sons, Inc., 1994, pp. 461-465
  3. C. Duff, 'Jitter analysis techniques,' Agilent Technologies, p. 1, 2002, available at http://www.agilent.com
  4. J. Sun, M. Li, and J. Wilstrup, 'A demonstration of deterministic jitter(DJ) deconvolution,' in Proc. IEEE Instrumentation Measurement Technol. Conf. (IMTC), vol. 1, Anchorage, AK, May 2002, pp. 293-298
  5. Maxim HighFrequency/Fiber Communications Group, 'Jitter in digital communication systems, part 1,' Application note, HFAN-4.0.3, pp. 2-6, Sept. 2001, available at http://pdfserv.maximic.com/arpdf/AppNotes/5hfan403.pdf
  6. K. Schumacher and J. J. O'reily, 'Distribution free bound on the performance of optical communication systems in the presence of jitter,' lEEE Proceedings, vol. 136J, no. 2, pp. 129-136, Apr. 1989
  7. Z. Nikolic, M. Stefanovic, and N. Stojanovic, 'Upper bound of error probability in the presence of intersymbol interference and jitter,' lEEE Electron. Lett., vol. 30, no. 5, pp. 389-390, Mar. 1994 https://doi.org/10.1049/el:19940291
  8. L. Tomba and W. A. Krzymien, 'Performance enhancement of multicarrier CDMA systems impaired by chip timing jitter,' in Proc. IEEE Int. Symp. Spread Spectrum Techniques Appl., vol. 1, Sept. 1996, pp. 22-25
  9. B. Kaushik, R. Ganesh, and R. Sadhu, 'Modeling delay jitter distribution in voice over IP,' Jan. 2003, unpublished, available at http://arxiv.org/pdf/cs.PF/0301005
  10. S. Shenghe, G. Shize, and L. Chunming, 'An adaptive deconvolution method for eleminating the effect of the time jitter,' in Proc. IEEE Instrumentation Measurement Technol. Conf. (lMTC), vol. 3, Hamamatsu, Japan, May 1994, pp. 1140-1142
  11. M. P. Li et al., 'A new method for jitter decomposition through its distribution tail fitting,' in Proc. IEEE Int. Test Conf. (ITC), Atlantic City, NJ, Sept. 1999,pp. 788-794
  12. C. Mailhes and B. Lacaze, 'Jitter effects in a multipath environment,' in Proc. IEEE Int. Conf. Acoustics Speech Sig. Processing (ICASSP), vol. 6, Salt Lake City, UT, May 2001, pp. 3905-3908
  13. M. Shimanouchi, 'An approach to consistent jitter modelling for various jitter aspects and measurement methods,' in Proc. IEEE Int. Test Conf. (ITC), Baltimore, MD, Nov. 2001, pp. 848-857
  14. Y. Takasaki, Digital Transmission Design and Jitter Analysis, 1st ed. Norwood, MA: Artech House Inc., 1991
  15. D. Kelly et al., 'PulsON second generation timing chip: Enabling UWB through precise timing,' in Proc. IEEE Conf. UWB Syst. Technol., Maryland, USA, 2002, pp. 117-121
  16. W. M. Lovelace and J. K. Townsend, 'The effects of timing jitter and tracking on the performance of impulse radio,' IEEE J. Select. Areas Commun., vol. 20, no. 9, pp. 1646-1651, Dec. 2002 https://doi.org/10.1109/JSAC.2002.805058
  17. X. Huang and Y. Li, 'Performances of impulse train modulated ultrawideband systems,' in Proc. IEEE Int. Conf. Commun. (ICC), vol. 2, New York City, NY, 2002, pp. 758-762
  18. L. Ge, G. Yue, and S. Affes, 'On the BER performance of pulse positionmodulation UWB radio in multipath channels,' in Proc. IEEE Conf. UWB Syst. Technol., vol. 3, Maryland, USA, May 2002, pp. 231-234
  19. G. Durisi and S. Benedetto, 'Performance evaluation and comparison of different modulation schemes for UWB multiaccess systems,' in Proc. IEEE Int. Conf. Commun. (ICC), vol. 3, Anchorage, AK, May 2003, pp. 2187-2191
  20. M. Hamalainen et al., 'On the performance comparison of different UWB data modulation schemes in AWGN channel in the presence of jamming,' in Proc. IEEE Radio and Wireless Conf. (RAWCON), Boston, MA, Aug. 2002, pp. 83-86
  21. M. Z. Win, 'A unified spectral analysis of generalized time hopping spread spectrum signals in the presence of timing jitter,' IEEE J. Select. Areas Commun., vol. 20, no. 9, pp. 1664-1676, Dec. 2002 https://doi.org/10.1109/JSAC.2002.805030
  22. M. Z. win, 'Spectral density of random time-hopping spread-spectrum UWB signals with uniform timing jitter,' in Proc. IEEE Mil. Commun. Conf. MILCOM, vol. 2, Atlantic City, NJ, Nov. 1999, pp. 1196-1200
  23. M. Z. WIN, 'Spectral density of random UWB signals,' IEEE Commun. Lett., vol. 6, no. 12, pp. 526-528, Dec. 2002 https://doi.org/10.1109/LCOMM.2002.806458
  24. Y. Shin and J. Ahn, 'Effect of timing jitter in an ultra wideband impulse radio system,' in Proc. IEEE Int. Symp. on Intelligent Signal Processing and Commun. Syst. (ISPACS), Hawaii, Nov. 2000, pp. 502-505
  25. L. B. Michael, M. Ghavami, and R. Kohno, 'Effect of timing jitter on Hermite function based orthogonal pulses for ultra wideband communication,' in Proc. 4th Int. Symp. Wireless Personal Multimedia Commun., Aalborg, Denmark, Sept. 2001, pp. 441-444
  26. M. Win and R. A. Scholtz, 'Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications,' IEEE Trans. Commun., vol. 48, no. 4, pp. 679-689, Apr. 2000 https://doi.org/10.1109/26.843135
  27. J. G. Proakis, Digital Communications, 3rd ed. New York: McGraw Hill, Inc., 1995, pp. 801-802
  28. I. Guvenc and H. Arslan, 'On the modulation options for UWB systems,' in Proc. IEEE Mil. Commun. Conf. MILCOM, Boston, MA, Oct. 2003
  29. D. Cassioli et aI., 'Performance of low complexity RAKE reception in a realistic UWB channel,' in Proc. IEEE Int. Conf. Commun. (ICC), vol. 2, New York, Apr. 2002, pp. 763-767
  30. M. Z. Win and R. A. Scholtz, 'Characterization of ultra-wide bandwidth wireless indoor channels: A communication theoretic view,' IEEE J. Select. Areas Commun., vol. 20, no. 9, pp. 1613-1627, Dec. 2002 https://doi.org/10.1109/JSAC.2002.805031
  31. J. Foerster, 'IEEE P802.15 working group for wireless personal area networks (WPANs), channel modeling sub-committee report - final,' Mar. 2003, available at http://www.ieee802.org/15/pub/2003/Mar03/
  32. F. E. Aranda, N. Brown, and H. Arslan,' Rake receiver finger assignment for ultra-wideband radio,' in IEEE Workshop Sig. Proc. Adv. Wireless Commun. (SPAWC), Rome, Italy, June 2003
  33. 'NIST/SEMATECH e-Handbook of statistical methods,' June 2003, available at http://www.itl.nist.gov/div898/handbook/
  34. G. R. Aiello and G. D. Rogerson, 'Ultra wideband wireless systems,' IEEE Microwave, vol. 4, no. 2, pp. 36-47, June 2003 https://doi.org/10.1109/MMW.2003.1201597
  35. M. Ghavami, L. B. Michael, and R. Kohno, 'Hermite function based orthogonal pulses for for ultra wideband communication,' in Proc. 4th Int. Symp. Wireless Personal Multimedia Commun., Aalborg, Denmark, Sept. 200I. pp.437-440