Multi-scale simulation of drying process for porous materials using molecular dynamics (part 1 : homogenization method)

분자동역학을 이용한 다공성 물질 건조공정 멀티스케일 시뮬레이션(1부 : 균질화법 해석)

  • 오진원 (한양대학교 일반대학원 나노공학과) ;
  • 백성민 (한양대학교 일반대학원 정밀기계공학과) ;
  • 금영탁 (한양대학교 기계공학부)
  • Published : 2004.06.01

Abstract

When porous materials are dried, the particles flocculate into fish-net structure in gel phase. In order to exactly analyze the stress distribution of porous materials during drying process, the elastic tensor of microscopic gel structures has to be predicted considering pore shapes as well as porosities of porous materials. The elastic characteristics of porous materials associated with porosities were predicted analyzing microscopic gel structures with circular and cross pores via homogenization method and the drying processes of the electric porous ceramic insulator were simulated using finite element method (FEM). Comparing analysis results between consideration and negligence of pores, the deformed shape and distributions of temperature and moisture were similar but the residual stress was significantly different.

다공성 물질이 건조될 때 입자는 겔 상태의 그물망 구조를 갖는다. 따라서 건조공정 중 발생하는 잔류응력을 정확하게 해석하기 위해서는 공극률과 공극형상에 따른 물성을 알아야 한다. 본 연구에서는 균질화법으로 원형과 십자형의 공극을 갖는 미시적인 겔구조로부터 공극률에 따른 재료의 탄성특성을 예측하고. 다공성 세라믹 애자의 건조공정을 유한요소 해석하였다. 해석 결과, 변형 형상과 온도, 습도 분포는 공극을 고려하지 않은 해석과 유사하지만 잔류응력 값은 큰 차이가 있음을 알 수 있었다.

Keywords

References

  1. Model. Simul. Mater. Sci. Eng. v.6 Modeling drying shrinkage in reconstructed porous materials: application to porous vycor glass D.P.Bentz;E.J.Garboczi;D.A.Quenard https://doi.org/10.1088/0965-0393/6/3/002
  2. Brit. Ceram. Trans. v.99 no.5 Role of aspect in elastic modulus-porosity relationship of triaxial porcelain B.O.Aduda;F.W.Nyongesa https://doi.org/10.1179/096797800680956
  3. Geophysics v.67 no.5 Computation of linear elastic properties from microtomographic images: Methodology and agreement between theory and experiment C.H.Arns;M.A.Knackstedt;W.V.Pinczewski;E.J.Garboczi https://doi.org/10.1190/1.1512785
  4. J. Am. Ceram. Soc. v.76 no.11 Effective elastic moduli of porous ceramic materials N.Ramakrishnan;V.S.Arunachalam https://doi.org/10.1111/j.1151-2916.1993.tb04011.x
  5. J. Am. ceram. Soc. v.83 no.12 Elastic properties of model porous ceramics A.P.Roberts;E.Garboczi https://doi.org/10.1111/j.1151-2916.2000.tb01680.x
  6. Model. Simul. Mater. Sci. Eng. v.8 no.4 Finite-element simulation of ceramic drying processes Y.T.Keum;J.H.Jeong;K.H.Auh https://doi.org/10.1088/0965-0393/8/4/310
  7. Comput. Str. v.69 A review of homogenization and topology optimization Ⅱ-analytical and numerical solution of homogenization equations B.Hassani;E.Hinton https://doi.org/10.1016/S0045-7949(98)00132-1
  8. Model. Simul. Mater. Sci. Eng. v.7 Hierarchical modeling of textile composite materials and structures by the homogenization method N.Takano;Y.Uetsuji;Y.Kashiwagi;M.Zako https://doi.org/10.1088/0965-0393/7/2/006
  9. J. Comput. Aided Mater. Design v.7 Multi-scale computational method for elastic bodies with global and local heterogeneity N.Takano;M.Zako;M.Ishizono https://doi.org/10.1023/A:1026558222392
  10. Soil mechanics in engineering practice K.Terzaghi;R.B.Peck;G.Mesri
  11. J. Am. Ceram. Soc. v.73 no.1 The theory of drying G.W.Scherer https://doi.org/10.1111/j.1151-2916.1990.tb05082.x
  12. Sol-gel Science : the physics and chemistry of sol-gel processing C.J.Brinker;G.W.Scherer
  13. Ceramic processing and sintering M.N.Rahaman
  14. Predictive process control of crowded particulate suspensions applied to ceramic manufactruing J.E.Funk;D.R.Dinger
  15. J. Am. Ceram. Soc. v.42 no.8 Dependence of mechanical strength of brittle polycrystalline specimens on porosity and grain size F.P.Knudsen https://doi.org/10.1111/j.1151-2916.1959.tb13596.x
  16. J. Am. Ceram. Soc. v.56 no.6 Elastic properies of polycrystalline monoclinic Gd₂O₃ W.R.Manning;O.Hunter https://doi.org/10.1111/j.1151-2916.1973.tb12506.x
  17. J. Am. Ceram. Soc. v.59 no.1-2 Porosity dependence of elastic properties of polycrystalline Lu₂O₃ O.Hunter;G.E.Graddy https://doi.org/10.1111/j.1151-2916.1976.tb09399.x
  18. J. Ceram. Proc. Res. v.3 no.3 An efficient numerical method for phase changes in ceramic drying process Y.T.Keum;K.H.Auh