Polyhydroxyamic Acid from 3,3′ - Dihydroxybenzidine and Pyromellitic Dianhydride as a Fire-safe Polymer

  • Park, Seung Koo (Polymer Science and Engineering Department, University of Massachusetts Amherst) ;
  • Farris, Richard J. (Polymer Science and Engineering Department, University of Massachusetts Amherst) ;
  • Kantor, Simon W. (Polymer Science and Engineering Department, University of Massachusetts Amherst)
  • Published : 2004.06.01

Abstract

In order to assess the potential of the hydroxy-containing polyamic acid (PHAA) synthesized from 3,3'-dihydroxy benzidine and pyromellitic dianhydride for a fire-safe polymer, the cyclization pathway of PHAA has been investigated using a model compound prepared from 2-aminophenol and phthalic anhydride. The reaction was monitored. by $^1{H-nuclear}$ magnetic resonance. N-(2-hydroxyphenyl) phthalamic acid is converted to N-(2-hydroxyphenyl) phthalimide at ca. 175$^{\circ}C$, showing endothermic reaction. The imide structure is rearranged to the benzoxazole structure over ca. $400^{\circ}C$. These results are similar with that of PHAA. According to pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) data, water and carbon dioxide are released during the cyclization and rearrangement reaction. One DMAc molecule is complexed with one carboxyl acid group in PHAA, which accelerates the imidization process to release more easily the flame retardant, water.

Keywords

References

  1. J. F. Wolfe in 'Encyclopedia of Polymer Science and Engineering', 2nd ed. (H. F. Mark, N. M. Bikales, C. G. Overberger, and G. Menges Eds.), Vol. 11, pp.601-635, Wiley Interscience, New York, 1988
  2. C. E. Sroog, Prog. Polym. Sci., 16,561 (1991) https://doi.org/10.1016/0079-6700(91)90010-I
  3. J.-H. Chang, M. J. Chen, and R. J. Farris, Polymer, 39, 5649 (1998) https://doi.org/10.1016/S0032-3861(97)10364-0
  4. R. J. Farris, J.-H. Chang, and S. K. Park, Proc. Int'l Aircraft Fire and Cabin Safety Research Conf U.S.A. (1998)
  5. J.-H. Chang and R. J. Farris, Polym. Eng. Sci., 39, 638 (1999) https://doi.org/10.1002/pen.11453
  6. S. K. Park, S. H. Cho, and R. J. Farris, Fiber Polym., 1,92 (2000) https://doi.org/10.1007/BF02875191
  7. S. K. Park and R. J. Farris, Polymer, 42, 10087 (2001) https://doi.org/10.1016/S0032-3861(01)00576-6
  8. C. Gao and S. W. Kantor, Proc. 54th Annual Technical Seung Koo Park et al. Conference U.S.A., 3072 (1996)
  9. S. K. Park and R. J. Farris, Polym. Bull., 45, 405 (2000) https://doi.org/10.1007/s002890070014
  10. I. Y. Karadash and A. N. Pravednikov, Vysokomol. Soyed., B9, 873 (1967)
  11. D. Likhatchev, C. Gutierrez-Wing, I. Kardash, and R. Vera-Graziano, J. Appl. Polym. Sci., 59, 725 (1996) https://doi.org/10.1002/(SICI)1097-4628(19960124)59:4<725::AID-APP18>3.0.CO;2-O
  12. G. L. Tullos, J. M. Powers, S. J. Jeskey, and L. J. Mathias, Macromolecules, 32,3598 (1999) https://doi.org/10.1021/ma981579c
  13. C. J. Pouchert and J. Behnke, 'The Aldrich Library of $^{13}C$ and $^1H$ FTNMR Spectra', 2nd ed., Vol. 3, p.198, Aldrich Chemical Co., Inc., Milwaukee 1993
  14. G. Pagani, A. Baruffini, P. Borgna, and G. Caccialanza, Farmaco Edizione Scientijica, 23, 448 (1968)
  15. F. W. Harris in 'Polyimides', (D. Wilson, H. D. Stenzenberger, and P. M. Hergenrother Eds.), p.1, Blackie & Son, New York, 1990
  16. M. I. Bessonov, M. M. Koton, V. V. Kudryavtsev, and L. A. Laius, 'Polyimides: Thermally Stable Polymers', p.1, Consultants Bureau, New York, 1987
  17. M.-J. Brekner and C. Feger, J. Polym. Sci., Part A, Polym. Chem., 25, 2005 (1987) https://doi.org/10.1002/pola.1987.080250720
  18. J. A. Kreuz, A. L. Endrey, F. P. Gay, and C. E. Sroog, J. Polym. Sci., Part A, Polym. Chem., 4, 2607 (1966) https://doi.org/10.1002/pol.1966.150041023
  19. G. Camino, L. Costa, and M. P. L. Cortemiglia, Polym. Degrad. Stab., 33, 131 (1991) https://doi.org/10.1016/0141-3910(91)90014-I