Transformation of a Filamentous Fungus Cryphonectria parasitica Using Agrobacterium tumefaciens

  • Park, Seung-Moon (Institute for Molecular Biology and Genetics, Basic Science Research Institute, Chonbuk National University) ;
  • Kim, Dae-Hyuk (Institute for Molecular Biology and Genetics, Basic Science Research Institute, Chonbuk National University)
  • Published : 2004.06.01

Abstract

As Agrobacterium tumefaciens, which has long been used to transform plants, is known to transfer T-DNA to budding yeast, Saccharomyces cerevisiae, a variety of fungi were subjected to the A. tumefaciens-mediated transformation to improve their transformation frequency and feasibility. The A. tumefaciens-mediated transformation of chestnut blight fungus, Cryphonectria parasitica, is performed in this study as the first example of transformation of a hardwood fungal pathogen. The transfer of the binary vector pBIN9-Hg, containing the bacterial hygromycin B phosphotransferase gene under the control of the Aspergillus nidulans trpC promoter and terminator, as a selectable marker, led to the selection of more than 1,000 stable, hygromycin B-resistant transformants per 1${\times}$10$\^$6/ conidia of C. parasitica. The putative transformants appeared to be mitotically stable. The transformation efficiency appears to depend on the bacterial strain, age of the bacteria cell culture and ratio of fungal spores to bacterial cells. PCR and Southern blot analysis indicated that the marker gene was inserted at different chromosomal sites. Moreover, three transformants out of ten showed more than two hybridizing bands, suggesting more than two copies of the inserted marker gene are not uncommon.

Keywords

References

  1. J. Biotechnol. v.66 Mycotechnology: The role of fungi in biotechnology Bennett,J.W. https://doi.org/10.1016/S0168-1656(98)00133-3
  2. Bioche. Biophys. Res. Commun. v.112 Transformation of Aspergillus nidulans by the orotidine-5'-phosphate decarboxylase gene of Neurospora crassa Ballance,D.J.;F.P.Buton;G.Turner https://doi.org/10.1016/0006-291X(83)91828-4
  3. Proc. Natl. Acad. Sci. USA v.81 Transformation of Aspergillus nidulans by using a trpC plasmid Yelton,M.M.;J.E.Hamer;W.E.Timberlake https://doi.org/10.1073/pnas.81.5.1470
  4. The Mycota. v.2 Genetics and biotechnology Lemke,P.A.;M.Peng
  5. Not. Biotechnol. v.18 Stable transformation of Erysiphe graminis an obligate biotrophic pathogen of barley Chaure,P.;S.J.Gurr;P.Spanu https://doi.org/10.1038/72666
  6. J. Infect. Dis. v.81 Genetic transformation of Coccidioides immitis facilitated by Agrobacterium tumefaciens Abuodgeh,R.O.;M.J.Orbach;M.A.Mandel;A.Das;J.N.Galgiani
  7. Appl. Environ. Microbiol. v.66 A fruiting body tissue method for efficient Agrobacterium-mediated transformation of Agaricus bisporus Chen,X.;M.Stone;C.Schlagnhaufer;C.P.Romaine https://doi.org/10.1128/AEM.66.10.4510-4513.2000
  8. Mycol. Res. v.105 Agrobacterium tumefaciens-mediated transformation of Fusarium circinatum Covert,S.F.;P.Kapoor;M.Lee;A.Briley;C.J.Nairn https://doi.org/10.1017/S0953756201003872
  9. Nat. Biotechnol. v.16 Agrobacterium tumefaciens-mediated transformation of filamentous fungi de Groot,M.J.A.;P.Bundock;P.J.J.Hookaas;A.G.M.Beijersbergen https://doi.org/10.1038/nbt0998-839
  10. Curr. Genet. v.40 Genetic transformation of the phytopathogenic ascomycete Calonectria morganii Malonek,S.;F.Meinhardt https://doi.org/10.1007/s002940100236
  11. Agaricus bisporus. Curr. Genet. v.30 Highly efficient homologous integration via tandem exo-beta-1,3-glucanase genes in the common mushroom Van de Rhee,M.D.;P.M.A.Graca;H.J.Huizing;H.Mooibroek https://doi.org/10.1007/s002940050116
  12. Science v.215 Biological control of chestnut blight Anagnostakis,S.L. https://doi.org/10.1126/science.215.4532.466
  13. Microbiol. Rev. v.56 Biological control of chestnut blight: an example of virus-mediated attenuation of fungal pathogenesis Nuss,D.L.
  14. Phytopathology v.75 Characterization of dsRNA-free and dsRNA-containing strains of Endothia parasitica in relation to hypovirulence Elliston,J.E. https://doi.org/10.1094/Phyto-75-151
  15. Physiol. Plant Pathol. v.23 Oxalate production by virulent but not by hypovirulent strains of Endothia parasitica Havir,E.A.;S.L.Anagnostakis https://doi.org/10.1016/0048-4059(83)90021-8
  16. Phytopathology v.79 Reduction of laccase activity in dsRNA-containing hypovirulent strains of Cryphonectria (Endothia) parasitica Rigling,D.;U.Heiniger;H.R.Hohl https://doi.org/10.1094/Phyto-79-219
  17. Mol. Microbiol. v.45 Characterization of a fungal protein kinase from Cryphonectria parasitica and its transcriptional upregulation by hypovirus Kim,M.J.;J.W.Choi;S.M.Park;B.J.Cha;M.S.Yang;D.H.Kim https://doi.org/10.1046/j.1365-2958.2002.03079.x
  18. J. Bacteriol. v.173 Regulation of laccase biosynthesis in the plant-pathogenic fungus Cryphonectria parasitica by double-stranded RNA Rigling,D.;N.K.Van Alfen https://doi.org/10.1128/jb.173.24.8000-8003.1991
  19. Mol. Cell. Biol. v.12 Cutinase in Cryphonectria parasitica, the chestnut blight fungus: suppression of cutinase gene expression in isogenic hypovirulent strains containing double-stranded RNAs Varley,D.A.;G.K.Podila;S.T.Hiremath https://doi.org/10.1128/MCB.12.10.4539
  20. Cryphonectria parasitica. Cene v.139 Virus-associated down-regulation of the gene encoding cryparin, an abundant cell-surface protein from the chestnut blight fungus Zhang,L.;D.Villalon;Y.Sun;P.Kazmierczak;N.K.Van Alfen
  21. Phytopathology v.91 Agrobacterium tumefaciens-mediated transformation of Fusarium oxysporum: An efficient tool for insertional mutagenesis and gene transfer Mullins,E.D.;X.Chen;P.Romaine;R.Raina;D.M.Geiser;S.Kang https://doi.org/10.1094/PHYTO.2001.91.2.173
  22. Mol. Plant-Microbe Interact. v.11 Magnaporthe grisea pathogenicity genes obtained through insertional mutagenesis Sweigard,J.A.;A.M.Carroll;L.Farrall;F.G.Chumley;B.Valent https://doi.org/10.1094/MPMI.1998.11.5.404
  23. J. Gen. Microbiol. v.110 Regulation of the transfer of Ti-plasmids of Agrobacterium tumefaciens Hooykaas,P.J.;C.Roobol;R.A.Schilperoot https://doi.org/10.1099/00221287-110-1-99
  24. Nucleic Acids Res. v.12 Binary Agrobacterium vectors for plant transformation Bevan,M. https://doi.org/10.1093/nar/12.22.8711
  25. Mol. Plant-Microbe Interact. v.8 A new extracellular laccase of Cryphonectria parasitica is revealed by deletion of Lac1 Kim,D.H.;D.Rigling;L.Zhang;N.K.Van Alfen https://doi.org/10.1094/MPMI-8-0259
  26. Proc. Natl. Acad. Sci. USA v.76 Replication of origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans Figurski,L.L.;D.R.Helinski https://doi.org/10.1073/pnas.76.4.1648
  27. J. Microbial. Biotechnol. v.9 Analysis of trans-acting elements for regulation of moc operons of p Ti15955 in Agrobacterium tumefaciens Jung,W.H.;C.H.Baek;J.K.Lee;K.S.Kim
  28. EMBO J. v.14 Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces erevisiae Bundock,P.;A. den Dulk-Ras;A.Beijersbergen;P.J.Hooykaas
  29. Magnaporthe grisea. Mol. Cells v.31 Agrobaterium tumefaciens-mediated transformation of the plant pathogenic fungus Rho,H.S.;S.Kang;Y.H.Lee
  30. J. Microbial. Biotechnol. v.10 Expression of murine GM-SF in recombinant Aspergillus niger Kim,M.J.;T.H.Kwon;Y.S.Jang;M.S.Yang;D.H.Kim
  31. Bio/Technol. v.9 A DNA transformation-competent Arabidopsis genomic library in Agrobacterium Lazo,G.R.;P.A.Stein;R.A.Ludwig https://doi.org/10.1038/nbt1091-963
  32. J. Bacteriol. v.157 Characterization of the replication and stability regions of Agrobacterium tumefaciens plasmid pTAR Gallie,D.R.;D.Zaitlin;K.L.Perry;C.Kado
  33. J. Bacteriol. v.183 Efficient vir gene induction in Agrobacterium tumefaciens requires virA, virG, and vir box from the same Ti plasmid Krishnamohan,A.;V.Balaji;K.Veluthambi https://doi.org/10.1128/JB.183.13.4079-4089.2001
  34. Mol. Gen. Genet. v.204 The promoter of TL-DNA gene 5 controls the tissue-specific expression of himeric genes carried by a novel type of Agrobacterium binary vector Koncz,C.;J.Schell https://doi.org/10.1007/BF00331014