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AN ALGORITHM FOR FITTING OF SPHERES

Ix-SunGg KM

ABSTRACT. We are interested in the problem of fitting a sphere to a set of data
points in the three dimensional Euclidean space. In Spéth [6] a descent algorithm
already have been given to find the sphere of best fit in least squares sense of
minimizing the orthogonal distances to the given data points. In this paper we
present another new algorithm which computes a parametric represented sphere in
order to minimize the sum of the squares of the distances to the given points. For
any choice of initial approximations our algorithm has the advantage of ensuring
convergence to a local minimum. Numerical examples are given.

1. INTRODUCTION

Fitting circles and spheres to given data points in the two or three dimensional
Euclidean space is a problem that arises in many application areas. The problem
of fitting spheres is at least relevant in computational metrology and reflectome-
try. Spéth [6] generalized a circle fitting algorithm to spheres, which computes a
parametric represented sphere in order to minimize the sum of the squares of the
distances to the given data points in R3. In this paper we present another new
algorithm which is slightly different from Spath and observe the convergence of our
algorithm.

Let us consider a sphere

(1.1) (z-a)?+(y-b)*+(z—c) =1
in its parametric form
(1.2) T =a+ rcosusinv,

y =b+ rsinusinv,

Z=Cc+rcosv
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For any given set {(:ck, Yk, 2k) k=1,2,... ,n} of data points in the three dimen-
sional Euclidean space, we are interested in the problem of fitting a sphere to the
given data points in such a way that the sum of the squares of the orthogonal dis-
tances from (zx, Yk, zk) to unknown points (z(a, r; uk, vk), y(b, 7; Uk, vi), 2(c, 75 vg)) is
minimized. Then the orthogonal distance dy of a point (xx, Yk, 2x) can be expressed
by

(1.3) di?=min [(mk —z(a,r; uk,vk))2+(yk —y(b, 7 ug, vk))2 + (2 — z(c,r;'vk))Q:I

Uk UV

= min [(mk — @ — T COS Uy Sin 'vk)2 + (yx — b — rsinugsin vk)2
Uk, Vg

+ (2 —c— rcosvk)2]

and the objective function to be minimized for fitting a sphere to the given n data
points (zk, Yk, 2k) (kK =1,...,n) is given by

n

(14) Q)= Z [(wk —a — T COoSUg sinvk)2

k=1

+ (yx — b— rsinug sinvg)? + (2x — ¢ — rcosvk)z],

where the parameter vector u = (a,b,¢,7,u1,u2,...,Un,V1,02,...,Un) € R(n+4),
By using the necessary conditions for a minimum, namely

(1.5) %% =0,
0o % _,,
(1.7) % =0,
(1.8) %? =0,
(1.9) %%:o (k=1,...,n),
(1.10) g—f)’::o k=1,...,n),

we have the following (2n + 4) equations:

n n

(1.11) Z:z:k—na—TZCOS'uksinvkzo,

k=1 k=1
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n n
(1.12) Zyk—nb—rZsinuksinvk =0,
k=1 k=1
n n
(1.13) sz—nc—chos'vk =0,
k=1 k=1

n n n
(1.14) Z T, COS UL sin vy + Z yx sinug sin vy + Z 2y, COS Uy,
k=1 k=1 k=1
n

n n
- aZcosu;c sinvg — szinuk sinvg — chosvk —nr =0,
k=1 k=1 k=1

(1.15) sin vy, [(zk —a)sinug — (y — b) cosuk] =0 (k=1,...,n),

(1.16) (zx — a) cosug cosvg + (yx — b) sin ug, cos vy

~ (2 —¢)sinvy =0 (k=1,...,n).

The above system of (2n + 4) equations can be divided into two parts. One is a
linear system of the four equations (1.11), (1.12), (1.13) and (1.14) for a, b, ¢ and
r, whose coefficient matrix depends on u; and vg(k = 1,2,...,n). The other part
is concerned with the 2n nonlinear equations (1.15) and (1.16). In each of (1.15)
and (1.16) the ith equation contains just u; or v; as unknown and its coeflicients
depend on a, b, ¢ and r. There are some well-known methods for solving the linear
system of the first part and the 2n equations (1.15) and (1.16) can be solved by a
simple method. Thus, one may be able to propose mixed iteration algorithms which
are connected with both well-known methods above. In this connection, Spéth [6]
proposed an iteration algorithm for the fitting of spheres.

2. ORTHOGONAL DISTANCE FITTING OF SPHERES

We will present another algorithm for the fitting of spheres. In fact, the steepest
descent method can be employed-as a minimization algorithm for minimizing the ob-
jective function (1.4). So, the fitting algorithm consists of both the steepest descent
method for minimizing Q(x) and the root-finding procedure for the 2n equations
(1.15) and (1.16). Our algorithm for minimizing the given objective function Q(u)
consists of the following two procedures.
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Procedure-1: Solve the 2n equations (1.15) and (1.16) with respect to a, b, ¢ and
r for ug and v (k =1,...,n). Spath’s technique for solving these equations can be
seen in Spéth [6]. This root-finding procedure is similar to that used in Spath [6].

Case 1: In case of sinv, = 0 in (1.15), 4. e., when vg = 0 or v, = 7, the equation
(1.16) gives (z — @) cosug + (yx — b) sinuy = 0. If we let

Tk —a) vy ™
! = arctan [-—((yk —b)](_ 5 <8l < 5),

then (sin ug, cosuy) has the two values (sin 8, cos#') and (—sin8?, — cos§'). Thus

let u = 6! or uy = 8' + 7, then A\, = (uy,vx) has the following four values:
(2.1) M =M1 Ak2) = (64,0),
M =()‘k 1»)‘k 2) = (91 ),
A =01 2) = (6" +,0),
A4 —(Ak 1, ) ( + ™, 'IT)
Case 2: If sinvy # 0, then (1.15) gives (yx — b) cosug —(zx — a)sinug = 0. Let
2 (yx —b) T _ T
= —_— [ —
0 arctan[(xk_a)}( 5 <0 < 2),
then (sinug, cosug) has the two values (sin 82, cos %) and (- sin 62, — cos §2). From
(1.16) if we let

(zx — @) cos 62 + (yr — b) sin 62
(2k —c) ] '

then (sinvk,cosvi) has the two values (sin6%,cos8®) and (—sin?, —cos6?), and

the corresponding vector Ay = (uk,v;) has the following four values:

(22) ,\2 =()\2 1) }\2'2) = (92’ 03)’
M=) = (62,6% + ),
A =(’\k,1> /\k,z) = (62 +7,6%),
A =812 2) = (6% +7,60° + 7).

6% = arctan [

Thus, in any case we can choose A\, = (ug,vx) = AL such that
(2.3) (zx — a —rcos(Agy) sin(/\;c’jz))2 + (yx — b — rsin(AFy) sin(/\;c',‘z))2

+ (zk —c—r cos()\;:k))2 = [_Ilnzin ¢ (zx —a— TCOS(Ai,l) Sin(/\i,z))z

+ (yr—b— rsin(AL 1) sin( (AL 2)) + (2k —c— rcos(/\fc,z))z].
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Further, we get an approximation

(24) u=(a,b,c,r,ul,w,...,un,vl,vg,...,vn)
_ m ym m y\m m m
= (a, b7 T A1,1) )‘2,1a R )"n,,17 A1,2’ )‘2,2Y T >‘n,2) .

Procedure-2: By using the steepest descent method for the given function Q(p),
determine a new value

y G41) (i1 i . ,

AU = (P B, R = ul) — avQ(uY))
from any given initial approximation pld) = (,ugj ), pgj ),.
given by minimizing the single variable function h(a) = Q(u(j ) —aVQ(ul ))) Here,

..,ugj)). The value of a is

V denotes the gradient operator.

We now describe an iteration algorithm for orthogonal distance fitting of spheres.
Algorithm:

Step 0. Let a(©, b ¢ and 7 be given as initial approximations for un-
knowns a, b, ¢ and r respectively.

Step 1. Apply Procedure-1 with a = a(®, b = b0, ¢ = ¢® and r = r©® for
Ug = ugco) and vg = v,(co) (k=1,...,n).

If we denote

[ —a©
- Tl | P S
L F(y_k__lﬁ)_ T T
0 -—arctan_(wk_a(o)) ( 5 <0 < 2),
63 = arctan (2 — a'9) cos 6% + (yx — b)) sin 92]
L (zk——c(o)) ’

then A\; = A;co) = (uio), v,(co)) has the following eight values:

(2-5) /\llc = ()\llc,h)‘llc,z) = (91,0),
X = (%0 M2) = (0%, m),
A=) = (0" +7,0),
X = (N Ak2) = (61 +m,m),
M=k = (6%6°),
A= (A 2) = (6%,6° + ),
AL = (/\Z,p /\Z,z) = (6* +m,6°),
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A=(f 1, R2) =0 +m,6 +m).
Also, we can choose A\ = (uk ,vk ) AT such that
(26) (zx —a® — @ cos(AP) sin(AT,))?
+ (y;C — (0 _ 0 sin()\Zfl) sin(/\fc'k))2 + (zk — O _ (0 cos(/\L'TZ))2

= 1—{nzin . {(wk —a® — O cos()\i,l) sin()\fc,g))2

+ (yk —~ b0 _ ,(0) sin()\fc,l) sin()\fc’z))2 + (zk — 0 _ 0 cos(/\fc,g))2
Thus we get an approximation

(2.7) u(o) = (a(o),b(o),c(o),r(o),ugo),ugo), ... ,ug"),v?),vg"), e ,v,(to))

= (0,50, O, rO X AT, AT AT, AT, -, AT).
Set j:=0.
Step 2. Apply Procedure-2 to the problem of determining an approximation
ﬂ(j+1)
= (aU+D),pU+1) g+l F+1)) gy gt Gy gl g0 5ty
from p¥) = (a(j),b(j),c(j),r(j),ugj),ugj),...,u,(f),vy),véj),...,v,(f))
Let VQ = (a0, 50),60, 70 af) 4P, ... 4 69,60, ..., 6{) be the gradient

of Q(u) at u = p¥) such that

(2.8) al) = -2 (Z z — nal?) — 00 Zcosu smv )

k=1 k=1
n . . n 5
8(1')=-2( yk—nb(J)—T(J)Zsinuscj)sinv )

k=1 k=1
n

2( 2 — ncl —T(J)Zcosv’)>
k=1 k=1
n

2( Tk (:osu,c sm'v,(f) +Zyk smug)smv()

=1

n
+ Z 2 cosv —a\ Z cosu sm v,(j)
=1 k=1

— b9 Zsmu smv — Zcos'u m'(j)>,

k=1
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and for k=1,2,...,n
ﬂ;cj) = 2r0) [sinv,(cj)((:ck — al)y sinufcj) (yx — b9)) cos u(’))]

ﬁl(cj) = —op(7) [(frk - a(j)) cos ugcj) cos v,ij) + (yr — b(j)) sin u;cj) cos v,(cj)

— (2% — c9)) sin v,(cj)].
Then it follows from the equations (1.15) and (1.16) that
(2.9) i =0 (k=1,...,n),
=0 (k=1,...,n).

We also get an approximation

(2.10) a0t = 40 — av(Q),

where a is obtained by minimizing the single variable function

(2.11) h(a) = Z[(wk — (@Y — 0a®) — (+0) — ap) cosu§c 9) smv(J))
k=1

+ (g — (B9 = b)) — (r0) — af) smufc 7) sin v(J))

T (21 — () — ag®) - (r9) — o) cosvl))? ]

That is,

(2.12) a= ( ;clzl(AkAk + BBy + Ckék)>
Sha (AR + B+ CP)

where

Ay = a®) 4 () cosugc 7 sin v,(c]) Tk, A = a9 + #0) cos ugcj) sinv,(cj),
By, = b9 + r( sip ug) sin v(’) — Yk, By = 59 + 7D sin ufcj) sin v,(cj),
Oy = cbi) 4 pli) cos’v,(cj) — z, Cr = &%) 4 79 cog vl(cj)'

Step 3. Apply Procedure-1 with a = @0+, b = pUHD), ¢ = gd+D) and r =

7-;(_7'+1) for uy = ul(cj+1) and v = U£j+1)(k =1,... ,n).
If we let
— "(.'H‘l)) T m
ol — B (zk G T 1T
arctan [ ——_(yk 56D ( 2 <6 < 2),

(g — BU+D)

2 _ e =0 )i (T 1 T
#“ = arctan [(:z:k—&(jﬂ))] 5 <@ < 2),
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zx, — 391)) cos 62 + (yg — bUHD) sin 2

63 = arctan [(

(si — 26D /
then Ay = ,\,(cj +) (u,(c’ +1),v,(cj +1)) has the following eight values:
(2.13) ’\Ilc = (’\Ilc I’Allc 2) = (91’0)7

’\k“(’\kl’ )=(91a7f),
A= (31, 2h,) = (6" +7,0),
M= (A1 Ak2) = (61 +m,7),
A= (%A = (6%,6°),
M= (A1, A0) = (62,6 +m),
M= (M) = (62 +7,6%),
AR =081, 8,) = (6% +m, 6% +m).
In addition, we can choose A\, = )\,(ej ) = (u,(cj 'H),v,(cj +1)) = AP such that
(2.14) (zx — aUHD — FU+D cos(N ) sin(AT,))
+ (yk — pU+) _ 7U+1) sin(Af) sin(A7))

+ (2 — &+ _ 70+ cos(/\}:‘z))2

2

= ton 8[( g — aUth) — U+ cog(AL 1)Sin()‘5c,2))2
+ (g = 30D — FU+D sin(AL ) sin(AL )

Thus we get an approximation

(2.15) pU+D = (gU+D) pU+Y) ol+D) pG+1) 0+ G+

ugﬂ)’ U§j+1), v§j+l)’ o ,v1(1j+1))
= (aUF1,pUHD), (UHD pG+D A AT AT AT, AT, - AT)
with aU+1) = gU+D) pli+1) = pli+1) G+ = li+D)p(+1) = FU+1),
Step 4. If Q(u(j"'l)) < Q(u(j)), then we set j := j + 1 and go back to Step 2.
Due to the descent property of Procedure-2, one may ensure the convergence
of our algorithm to a local minimum independent of approximations p(¥). That is,

it follows

(2.16) QWU) < Q) (i=012,.).
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Nevertheless, convergence to the global minimum may not be guaranteed. Un-
fortunately, it is possible for our algorithm to converge to other than the absolute

minimum.

3. NUMERICAL EXAMPLES

To test our algorithm, two examples will be given for the problem of fitting
of spheres. By using our algorithm we observe convergence of the corresponding
objective function in each case. In fact, it is certain that each quadratic function
converges to a local minimum. Further, observing some results obtained by using
both our method and Spéath’s algorithm, each of their convergences will be compared
with the other.
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Figure 1. The objective function of our algorithm under different cases

Ezample 1. The ten data points (—1,2,3), (0,1,3 + v/2), (0,3,3 — v/2), (1,0,3),
(1++2,3,4), (1,2,1), (1,2,5), (1,4,3), (2,1,3 — v2), (2,2 + v/2,4), lying exactly
on the sphere (z —1)2+ (y ~2)?+ (2 —3)? =22 witha=1,b=2,c=3 and r =2

are given.
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When our algorithm or Spath’s algorithm is used for determining a sphere (z —
a)? + (y — b)? + (2 — c)? = 72 best-fitted to the above data points, the objective
function to be minimized is given by

10

Qp) = Z [(:z:k —a—Tcos Uy sin vg)? + (yr —b—r sin ug sinvg)? + (2x —c— 7 cos vy, )2
k=1

15

{1 SR Y

The value of objective function Q

0 It o 1 et 1 e e

0 10 20 30 40 50 60
The number of teration

Figure 2. Comparison of our algorithm and Spath’s algorithm in
terms of convergence

(1) Using Case-A (a® =1, b =1, @ = 1,79 = 1), Case-B (a® = 4, b®) =4,
0 = 4 r0) = 1) and Case-C (a(o) =6, b0 =6, 0 =670 = 1) for initial
approximations in our algorithm respectively, we obtain the exact values a = 1,
b=2,c=3and r =2 in less than 100 iterations in each case. We had the exact
values after 30 iterations in Case-A, after 48 iterations in Case-B and after 97
iterations in Case-C respectively. These results are visualized in Figure 1. This

shows the convergence of Q(u) to a local minimum in our algorithm (properly
speaking, the global minimum).

(2) Using the same starting points Case-A (a(® = 1, b0 =1,¢0 =1and @ = 1)
and Case-B (a® = 4, b0 = 4, ¢©® = 4, (O = 1) again in Spath’s algorithm,
we obtained the exact values after 30 iterations in Case-A (a(o) = 1,50 =1,
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0 = 1). This result is almost the same in our algorithm. The good result may
be due to the choice of good initial approximations near to the exact solution.
On the other hand, in Case-B (a(o) =4, b0 =4, 0 =4, 70 = 1), we had

the exact values after 55 iterations. In Figure 2, we see the convergence of Q(u)
compared with that in our algorithm.

Ezample 2. Given any twelve data points (-3, 2, 3.5), (-2,3,4), (-2,-3,-3),
(-1,4,3), (0,3,4), (0,-3,4), (1,4,3), (2,-3,-4), (2,-3,3), (3,-2,3.5), (4,-2,2),
(4, —3,0) near to the sphere 22 4+ 42 + 2% = 25, we employ our algorithm and Spith’s
algorithm by using Case-A(a® = -7, b0 = -7, A = —7, 70 = 1) and Case-

B(a® =5, b©® =5, ¢ = 5, r(O) = 1) as initia] approximations, respectively.
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Figure 3. Comparison of our algorithm and Spath’s algorithm under
different cases

(1) When Case-A is used, after 50 iterations, we obtained approximations a =
0.0222, b = 0.1712, ¢ = —0.0778, r = 5.0628 and the value of objective function
Q(u) = 0.3914 in our algorithm, and also a = —0.1194, b = 0.0438, ¢ = 0.0111,
r = 5.0403 and Q(u) = 0.4923 in Spith’s algorithm.

After 100 iterations, we had a = 0.0881, b = 0.2382, ¢ = —0.1323, r = 5.0844,
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Q(p) = 0.3782 in our algorithm, and a = 0.0870, b = 0.2373, ¢ = —0.1316,
r = 5.0842, Q(un) = 0.3782 in Spath’s algorithm.

(2) When Case-B is used, after 50 iterations, we got a = 0.1111, b = 0.2635,
¢ = —0.1542, r = 5.0940, Q(r) = 0.3800 and a = 0.2964, b = 0.4339, ¢ =
—0.2763, r = 5.1462, Q(u) = 0.4869 in our algorithm and in Spith’s algorithm
respectively.

(3) In each case of Case-A and Case-B, the convergences of our algorithm and
Spath’s algorithm were compared in Figure 3.

(4) Using our algorithm, after 140 iterations in Case-A and after 152 iterations in
Case-B, respectively, we had the optimal approximations a = 0.0885, b = 0.2386,
¢ = —0.1327, r = 5.0845 and Q(u) = 0.3782. These approximations determine
a fitted sphere (z — a)? + (y — b)2 + (2 — ¢)? = r2. It seems to be the sphere of
best fit to the given data points. This shows that the objective function Q(u)
converges to a local minimum in our algorithm (hopefully, the global minimum).
We see this convergence of our algorithm in Figure 4.
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Figure 4. The objective function of our algorithm under different cases

In conclusion, observing the results obtained in the above examples, we can see
the following facts which are not proven.
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(1) Even if the convergence of the given quadratic function @(u) to the global min-
imum may not be guaranteed, our algorithm has the advantage of ensuring
convergence to a local minimum for any choice of initial approximations.

(2) In comparison with Spath’s algorithm by means of the number of iterations
without employing computational times, our method is as good as Spith’s al-
gorithm in terms of convergence. Further, our algorithm may be better in case
that their starting points are not near to the exact solutions.
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