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FOURIER MULTIPLIERS ON CERTAIN HARDY SPACES

SUNGGEUM HONG

ABSTRACT. We prove de Leeuw’s restriction theorem result Jodeit Jr. [4] for mul-
tipliers on H? spaces, p < 1.

1. INTRODUCTION

Let 0 < p < 1. We denote the quasi norm
(supapl{a: e R™: |f(z)| > a}l)l/p
a>0
of f in L”* by ||f||Lp, and the inverse Fourier transform of f by fV. Let Tp,,f =
mY x f. We define the class of Fourier multipliers M(HP, LP*®)(R™) to be the set of
all bounded measurable functions m so that for all f € C§°(R™) N HP(R™),

|| T fllLee < C||f|me-

The best constant C is the quasi norm of the operator T}, and we write ||m/||s for
this quantity.

Let 1 < p < 2. We define the class of Fourier multipliers M(LE_,, LP*) to be the
set of all bounded measurable functions m so that for all f € CZ(RF) N L?_(RF),

rad
T fllLeee < Clifllze -

The best constant C is the norm of the operator T;,,, and we write ||m||aq for this
quantity.

We now split R¥+! = RE@R', and denote by L?_,(LP) the space of all measurable
functions f of the form f(z’,z") = g(|2'|,z") where g is defined on (0, c0) x R!, for
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which
o 1/p
Hf“z;pd(Lp) = (// |g(s,z)!”s’°“1dsdz)
ra Rl 0
is finite.

We define the class of Fourier multipliers N'(L? ,(LP), LP"*) as the set of all
bounded measurable functions m so that for all f(z/,2") = g(|z'|,z") € C§°(RF+),

1T fllzeee < DIIfllze (rr)-

The best constant D is the quasi norm of the operator T}, and we write ||m||y for
this quantity.

In Hong [2], the convolution operator generated by Fourier multipliers supported
on the cone is of weak type (p,p) on HP(R™*!), 0 < p < 1 for the critical value
dp = n(1/p—1/2) — 1/2. By de Leeuw type restriction theorem (see appendix in
Hong [2]), this estimate implies the known result that the Bochner-Riesz means of
the critical index d, = n(1/p — 1/2) — 1/2 is of weak type (p,p) for functions in
HP(R™) (see Stein, Taibleson & Weiss [7]).

Similarly, in Hong [3] the convolution operator associated with a localized height
of cone multipliers is of weak type (p,p) for the functions of the form f(r,t) =
9(|z|,t) f p=2n/(n+ 1+ 28) and 0 < § < (n—1)/2. Then by de Leeuw type
restriction theorem (see appendix in Hong [3]), this result implies the weak type
endpoint estimate for the Bochner-Riesz means on radial functions in LP(R"™) where
p=2n/(n+1+25) and 0 < § < (n — 1)/2, which is proved by Chanillo &
Muckenhoupt [1]. For the related result on real Hardy spaces, see also Liu [5].

In the above examples, Fourier multipliers are continuous. Here, the purpose of
this article is to prove de Leeuw’s restriction theorem Jodeit Jr. [4] when Fourier
multipliers are in the class L%, and belong to the class M(HP, LP>®)(Rk*!) p < 1.
Here HP is the standard real Hardy space as defined in Stein [6]. Further, we also
consider the restriction theorem when Fourier multipliers are in the class L, and
contained in the class N'(Lf_,(LP),LP*), 1<p<2.

Theorem 1. Let 0 < p < 1. Let m(¢',£") be contained in the class
M(HP, [P>)(RFH).

Then for almost every &",
men(€) = m(€, &)
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is contained in the class M(HP, LP*®)(R*) and the multiplier norm of men does not
exceed that of m.

Remark 1. It is not known whether m can be contained in the class
M(H?, V) (R,

Corollary 1. Let 1 < p < 2. Let m(¢',¢") be contained in the class
N(LE (LP), LP).

rad
Then for almost every £,
men(€') =m(¢',¢")
is contained in the class M(LE_;, [P*°) and the multiplier norm of men does not

ezceed that of m.

Remark 2. When p = 2, there is an example that Fourier multiplier m is not con-
tained in the class N'(L? ,(LP), L»*) (see Hong [3)).

2. RESTRICTION THEOREM ON HP SPACES, p <1

An atom is defined as follows: Let 0 < p < 1 and s be an integer that satisfies
s > n(l/p—1). A (p,s)-atom is a function a which is supported on a cube Q; with
center z;, and which satisfies

@) la(e)| < 1Q;177;
(it) / a(z)z¥dz =0
where]l; = (Y1,72;--+,7n) is a n-tuple of non-negative integers satisfying |y| <
M+72+ - +9, <5, and 27 =Nz .. g,
If {a;} is a collection of (p, s)-atoms and {c;} is a sequence of complex numbers
with 3722, [¢j[P < oo, then the series f = } 72, c;g; converges in the sense of
distributions, and its sum belongs to H? with the quasi norm

. > 1
Il = imf (;w) /e

i=1C%=
(see Stein [6]).
Lemma 1. Suppose f. and f are measurable functions on R™ and f. — f almost

everywhere. Assume that ||fel|zp.0 < CYP for some C > 0 and for all € > 0. Let
a >0 be fized. Then oP|{z € R": |f(z)] >a}| < C.
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Proof. See Hong [2, 3] O

Proposition 1. Let f(z',z") = (1 ® f2)(z',z") for fi € CL(R*) N HP(R*) and
f2 € C(RY). Then

(1) Il oe+ty < Allf1ll e re)s
where A depends on the support of fo.

Proof. We first consider the atomic decomposition of f2. Suppose supp fo C K,
where K is a compact set. Fix a positive smooth function ¢ that equals 1 in the
cube of side length 1 centered at the origin and vanishes out the concentric cube of

side length 1. We set
|z — =]

CJ (.’L‘) = C( 2Rj )’
where z; is the center of the cube Q; and 2R; is the side length. Write

_ G *
KA DA% and

is the cube concentric with Q; and with sides twice the length. The (; form a
partition of unity for the set K subordinate to the finite cover {Q;-‘}j=1,_,,,n of K,

that is xx = >_7_; n; with each n; supported in the cube Q;.

Set

fi = fni-cQI7MP, and A; =1Q;1M.

It is clear from this that f; is supported in @Q; and that If] < |Q;|~1/P there.
Also it is easily seen that 3°7_) [A;[P = 3°7_; 1Q;l. So fo =37 );f; is an atomic
decomposition, except that f; does not satisfy the cancellation property.

Fix a smooth function ® on B(0,1) (the unit ball about the origin) with

/ ®(z',2")dx’ dz" # 0.
RIJRE

For t > 0, set ®;(z) = t™" ®(z/t), so that
/ / (2, z")dz’ dz”" #£ 0
R JR¥

Mg f(a',z") = sup |(f * ®;)(z, z")].
£50

Suppose that f; is (p, N)-atom (N > k(1/p - 1)) on R¥ which is supported in a
cube Q) of side length 2F1 centered at z/, and f; is an atom on R which is supported
in the cube Qj of side length 272 centered at 7. Then f1 ® f» is a (p, N )-atom

for all ¢t. Now let
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(N' > (k+1)(1/p—1)) on R* x R}, which is supported in a cube Q; ® Q2 of diameter
(2F1 4 2R2)1/2 centered at (z/,z").

Consider the case (z',z") € (Q1 ® Q2)*. Since Mg f(z',2") < C|Q1 ® Q2| V77,
then

(2.1) / [Ms f(z',2")|Pdz’' dz”" < C.

Next, consider the case (z/,z") € {(Q1®Q2)*}¢. Using the momentum conditions
on fi1 ® fo, that is

/ / (= 8 2") (f1 ® fo)(«',a") da’ da" = 0
R!JRF
for all 8 with |3| < N, we have

(f " Qt)(m',m")
= /Rl/mk(fl ® f2)(¥',y") [Be(a’ — ' 2" — y") — Powis(v',y")] dy' &y,

where Py . 4(y',y") is the N-th order Taylor polynomial of the function v,y") —
®;(z' — ¢/, 2" — y") expanded about (z’,z"); here N is the smallest integer with
N>2(k+)1/p-1).

Now, by the usual estimate of the remainder term in a Taylor expansion,
& =y = &)

! ! n " ! n
d. (' — r — — P <C =
| t( v, y) z' .z ,t(yay )|—- tkl N+1

)

and since (v',9y") € Q1 ®Q2, (z',2") € {(Q1®Q2)*}° and @ is supported in B(0, 1),
we have that ¢t > c|(z' — 2/, 2" — z)|. Hence

9R1 | 9R2)1/2 k++N+1 )
( ) ) Q1 ® Q2|7

and since (k + 1+ N + 1)p > k+ 1, we get (2.1) for (2/,2") € {(@1 ® Q2)"}*.

Finally, let {f;} be a collection of HP atoms and {);} be a sequence of complex
numbers with 3, A < 0o. Set fi(z') = 32; Aifi(z') and fa(2') = 3°; A f(z"). Since
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p < 1, we have
/,/U [Mgf(z',=")P dz’ dz”
< Z |AdlP Z |57 /,/"{Mé(fi ® f;)(a,2")P dz’ dz”
i 3 z'Jz
SCYNF D NP < Allfills ey,
i J
whereA:C’Z]. [,\jlp___gzj 1Q;1. O

Now we proceed to the proof of the restriction theorem. The method of proof is
an adaptation of the argument in Hong [2].

Proof of Theorem 1. Let f; € CP(R*)NH?(R*) and f, . € C$°(R!) with fz:(g") =
el(l/p—1)¢(§”€;¢1) and supp ¢ C B(0,1). Set fe(z',2") = (f1 ® fa,)(', z").
Suppose that m is continuous. A straight forward calculation gives
Tmfe(:c',x") = Tine (fl ® El/pég)(ml‘ 6$")€i<m",a>
where m&(¢&’, £") = m(¢',e€” + a). By (1) in Proposition 1 we have

(2.2) 1T (f1 ® @)lIzee < Cg llmlipllfull .

Applying the Lebesgue dominated convergence theorem, we see that T« (f; ® 95)
converges to (T, f1) ® ¢ as € — 0 where m,(¢') = m(¢’,a). Thus, from Lemma 1

we have

(2.3) (T 1) ® Blloce < Cyllm||mll fillme.

Suppose now that m is in the class L*°. Let S denote the unit cube and set
!

Ps(€',€") = 5—,}¢[ XS(%, %—1) Now 15 € L' and m € L™ yield that ¥s * m is continu-
ous. Clearly,

T¢6*mf€($',:1:") — ,1—.1/)5*1”e (fl ® El/p J))(zl, 6.'1:”) ei<‘°"1a>,
and from ||¢s]iz2 = 1 and (2.2) we have

| Tpseme (fr ® B)llLree < |95l L1 [|Tone (f1 ® B)|| o0
Cy llm|| | f1ll e

A

IA

Likewise, Tysame(f1 ® ¢) converges to (Ty;am.f1) ® ¢ as € — 0 by the Lebesgue
dominated convergence theorem. Moreover, for fixed ¢ the definition of Lebesgue
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point ¢’ is that
Q) Jmyseme) = fim o ([ me oo an

= m(¢,¢"),
where S; is the cube of side length § centered at the origin. By applying the Lebesgue

dominated convergence theorem again and (2.4)
b Ty, (f1 ® 6) = Tona (1 © 9),

and by (2.3)
| B Topgam, (F1 ® B)llioee < Cylimllall fulle-
Therefore, m, is contained in the class M(HP, L»*)(R¥) and thus

[Imallat < [lm|at.

This completes the proof. d

Remark 3. In order to prove Corollary 1, We take fi € C*(R¥) N LP ad(Rk) and
f2.e € C°(RY) with

T el fA/p-1)7\ e ¢( )
fell) = 0

and supp ¢ C B(0,1). The remaining part follows the similar argument as above.
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