FOURIER MULTIPLIERS ON CERTAIN HARDY SPACES

SUNGGEUM HONG

ABSTRACT. We prove de Leeuw's restriction theorem result Jodeit Jr. [4] for multipliers on H^p spaces, p < 1.

1. Introduction

Let 0 . We denote the quasi norm

$$\left(\sup_{\alpha>0} \alpha^p |\{x \in \mathbb{R}^n : |f(x)| > \alpha\}|\right)^{1/p}$$

of f in $L^{p,\infty}$ by $||f||_{L^{p,\infty}}$, and the inverse Fourier transform of f by f^{\vee} . Let $T_m f = m^{\vee} * f$. We define the class of Fourier multipliers $\mathcal{M}(H^p, L^{p,\infty})(\mathbb{R}^n)$ to be the set of all bounded measurable functions m so that for all $f \in C_0^{\infty}(\mathbb{R}^n) \cap H^p(\mathbb{R}^n)$,

$$||T_m f||_{L^{p,\infty}} \le C||f||_{H^p}.$$

The best constant C is the quasi norm of the operator T_m , and we write $||m||_{\mathcal{M}}$ for this quantity.

Let $1 \leq p < 2$. We define the class of Fourier multipliers $\mathcal{M}(L^p_{rad}, L^{p,\infty})$ to be the set of all bounded measurable functions m so that for all $f \in C_0^{\infty}(\mathbb{R}^k) \cap L^p_{rad}(\mathbb{R}^k)$,

$$||T_m f||_{L^{p,\infty}} \le C||f||_{L^p_{rad}}.$$

The best constant C is the norm of the operator T_m , and we write $||m||_{\mathcal{M}}$ for this quantity.

We now split $\mathbb{R}^{k+l} = \mathbb{R}^k \oplus \mathbb{R}^l$, and denote by $L^p_{rad}(L^p)$ the space of all measurable functions f of the form f(x', x'') = g(|x'|, x'') where g is defined on $(0, \infty) \times \mathbb{R}^l$, for

Received by the editors June 26, 2003 and, in revised form, February 5, 2004.

²⁰⁰⁰ Mathematics Subject Classification. 42B15, 42B30.

Key words and phrases. restriction theorem, Fourier multipliers.

This work was supported by grant No. R04-2002-000-20028-0 from the Basic Research Program of the Korean Science & Engineering Foundation.

which

$$||f||_{L^p_{rad}(L^p)} = \left(\int_{\mathbb{R}^l} \int_0^\infty |g(s,z)|^p s^{k-1} \, ds \, dz\right)^{1/p}$$

is finite.

We define the class of Fourier multipliers $\mathcal{N}(L^p_{rad}(L^p), L^{p,\infty})$ as the set of all bounded measurable functions m so that for all $f(x', x'') = g(|x'|, x'') \in C_0^{\infty}(\mathbb{R}^{k+l})$,

$$||T_m f||_{L^{p,\infty}} \le D ||f||_{L^p_{rad}(L^p)}.$$

The best constant D is the quasi norm of the operator T_m , and we write $||m||_{\mathcal{N}}$ for this quantity.

In Hong [2], the convolution operator generated by Fourier multipliers supported on the cone is of weak type (p,p) on $H^p(\mathbb{R}^{n+1})$, $0 for the critical value <math>\delta_p = n(1/p - 1/2) - 1/2$. By de Leeuw type restriction theorem (see appendix in Hong [2]), this estimate implies the known result that the Bochner-Riesz means of the critical index $\delta_p = n(1/p - 1/2) - 1/2$ is of weak type (p,p) for functions in $H^p(\mathbb{R}^n)$ (see Stein, Taibleson & Weiss [7]).

Similarly, in Hong [3] the convolution operator associated with a localized height of cone multipliers is of weak type (p,p) for the functions of the form f(x,t)=g(|x|,t) if $p=2n/(n+1+2\delta)$ and $0<\delta\leq (n-1)/2$. Then by de Leeuw type restriction theorem (see appendix in Hong [3]), this result implies the weak type endpoint estimate for the Bochner-Riesz means on radial functions in $L^p(\mathbb{R}^n)$ where $p=2n/(n+1+2\delta)$ and $0<\delta\leq (n-1)/2$, which is proved by Chanillo & Muckenhoupt [1]. For the related result on real Hardy spaces, see also Liu [5].

In the above examples, Fourier multipliers are continuous. Here, the purpose of this article is to prove de Leeuw's restriction theorem Jodeit Jr. [4] when Fourier multipliers are in the class L^{∞} , and belong to the class $\mathcal{M}(H^p, L^{p,\infty})(\mathbb{R}^{k+l})$, p < 1. Here H^p is the standard real Hardy space as defined in Stein [6]. Further, we also consider the restriction theorem when Fourier multipliers are in the class L^{∞} , and contained in the class $\mathcal{N}(L^p_{rad}(L^p), L^{p,\infty})$, $1 \leq p < 2$.

Theorem 1. Let $0 . Let <math>m(\xi', \xi'')$ be contained in the class

$$\mathcal{M}(H^p, L^{p,\infty})(\mathbb{R}^{k+l}).$$

Then for almost every ξ'' ,

$$m_{\xi''}(\xi') \equiv m(\xi',\xi'')$$

is contained in the class $\mathcal{M}(H^p, L^{p,\infty})(\mathbb{R}^k)$ and the multiplier norm of $m_{\xi''}$ does not exceed that of m.

Remark 1. It is not known whether m can be contained in the class

$$\mathcal{M}(H^1, L^{1,\infty})(\mathbb{R}^{k+l}).$$

Corollary 1. Let $1 \le p < 2$. Let $m(\xi', \xi'')$ be contained in the class

$$\mathcal{N}(L_{rad}^p(L^p), L^{p,\infty}).$$

Then for almost every ξ'' ,

$$m_{\xi''}(\xi') \equiv m(\xi',\xi'')$$

is contained in the class $\mathcal{M}(L^p_{rad}, L^{p,\infty})$ and the multiplier norm of $m_{\xi''}$ does not exceed that of m.

Remark 2. When p=2, there is an example that Fourier multiplier m is not contained in the class $\mathcal{N}\left(L^p_{rad}(L^p), L^{p,\infty}\right)$ (see Hong [3]).

2. Restriction theorem on H^p spaces, p < 1

An atom is defined as follows: Let $0 and s be an integer that satisfies <math>s \ge n(1/p-1)$. A (p,s)-atom is a function $\mathfrak a$ which is supported on a cube Q_j with center x_j , and which satisfies

(i)
$$|\mathfrak{a}(x)| \le |Q_j|^{-1/p}$$
;

(ii)
$$\int_{\mathbb{R}^n} \mathfrak{a}(x) \, x^{\gamma} \, dx = 0$$

where $\gamma = (\gamma_1, \gamma_2, \dots, \gamma_n)$ is a *n*-tuple of non-negative integers satisfying $|\gamma| \le \gamma_1 + \gamma_2 + \dots + \gamma_n \le s$, and $x^{\gamma} = x^{\gamma_1} x^{\gamma_2} \dots x^{\gamma_n}$.

If $\{a_j\}$ is a collection of (p, s)-atoms and $\{c_j\}$ is a sequence of complex numbers with $\sum_{j=1}^{\infty} |c_j|^p < \infty$, then the series $f = \sum_{j=1}^{\infty} c_j a_j$ converges in the sense of distributions, and its sum belongs to H^p with the quasi norm

$$||f||_{H^p} = \inf_{\sum_{j=1}^{\infty} c_j \mathfrak{a}_j = f} \left(\sum_{j=1}^{\infty} |c_j|^p \right)^{1/p}$$

(see Stein [6]).

Lemma 1. Suppose f_{ϵ} and f are measurable functions on \mathbb{R}^n and $f_{\epsilon} \to f$ almost everywhere. Assume that $||f_{\epsilon}||_{L^{p,\infty}} \leq C^{1/p}$ for some C > 0 and for all $\epsilon > 0$. Let $\alpha > 0$ be fixed. Then $\alpha^p |\{x \in \mathbb{R}^n : |f(x)| > \alpha\}| \leq C$.

Proof. See Hong [2, 3]

Proposition 1. Let $f(x', x'') = (f_1 \otimes f_2)(x', x'')$ for $f_1 \in C_0^{\infty}(\mathbb{R}^k) \cap H^p(\mathbb{R}^k)$ and $f_2 \in C_0^{\infty}(\mathbb{R}^l)$. Then

$$(1) ||f||_{H^p(\mathbb{R}^{k+l})} \le A ||f_1||_{H^p(\mathbb{R}^k)},$$

where A depends on the support of f_2 .

Proof. We first consider the atomic decomposition of f_2 . Suppose supp $f_2 \subset K$, where K is a compact set. Fix a positive smooth function ζ that equals 1 in the cube of side length 1 centered at the origin and vanishes out the concentric cube of side length 1. We set

$$\zeta_j(x) = \zeta(\frac{|x-x_j|}{2^{R_j}}),$$

where x_j is the center of the cube Q_j and 2^{R_j} is the side length. Write

$$\eta_j = rac{\zeta_j}{\sum_k \zeta_k}, \;\; ext{and} \;\; Q_j^*$$

is the cube concentric with Q_j and with sides twice the length. The ζ_j form a partition of unity for the set K subordinate to the finite cover $\{Q_j^*\}_{j=1,\dots,n}$ of K, that is $\chi_K = \sum_{j=1}^n \eta_j$ with each η_j supported in the cube Q_j .

Set

$$f_j = f\eta_j \cdot c^{-1} |Q_j|^{-1/p}$$
, and $\lambda_j = |Q_j|^{1/p}$.

It is clear from this that f_j is supported in Q_j and that $|f_j| \leq |Q_j|^{-1/p}$ there. Also it is easily seen that $\sum_{j=1}^n |\lambda_j|^p = \sum_{j=1}^n |Q_j|$. So $f_2 = \sum_{j=1}^n \lambda_j f_j$ is an atomic decomposition, except that f_j does not satisfy the cancellation property.

Fix a smooth function Φ on B(0,1) (the unit ball about the origin) with

$$\int_{\mathbb{R}^l} \int_{\mathbb{R}^k} \Phi(x', x'') \, dx' \, dx'' \neq 0.$$

For t > 0, set $\Phi_t(x) = t^{-n} \Phi(x/t)$, so that

$$\int_{\mathbb{R}^l} \int_{\mathbb{R}^k} \Phi_t(x', x'') \, dx' \, dx'' \neq 0$$

for all t. Now let

$$M_{\Phi}f(x',x'') = \sup_{t>0} |(f*\Phi_t)(x',x'')|.$$

Suppose that f_1 is (p, N)-atom $(N \ge k(1/p-1))$ on \mathbb{R}^k which is supported in a cube Q_1 of side length 2^{R_1} centered at $\overline{x'}$, and f_2 is an atom on \mathbb{R}^l which is supported in the cube Q_2 of side length 2^{R_2} centered at $\overline{x''}$. Then $f_1 \otimes f_2$ is a (p, \widetilde{N}) -atom

 $(\widetilde{N} \geq (k+l)(1/p-1))$ on $\mathbb{R}^k \times \mathbb{R}^l$, which is supported in a cube $Q_1 \otimes Q_2$ of diameter $(2^{R_1} + 2^{R_2})^{1/2}$ centered at $(\overline{x'}, \overline{x''})$.

Consider the case $(x', x'') \in (Q_1 \otimes Q_2)^*$. Since $M_{\Phi} f(x', x'') \leq C |Q_1 \otimes Q_2|^{-1/p}$, then

(2.1)
$$\int_{x'} \int_{x''} [M_{\Phi} f(x', x'')]^p \, dx' \, dx'' \le C.$$

Next, consider the case $(x', x'') \in \{(Q_1 \otimes Q_2)^*\}^c$. Using the momentum conditions on $f_1 \otimes f_2$, that is

$$\int_{\mathbb{R}^l} \int_{\mathbb{R}^k} (x' \otimes x'')^{\beta} (f_1 \otimes f_2)(x', x'') dx' dx'' = 0$$

for all β with $|\beta| \leq \widetilde{N}$, we have

$$(f * \Phi_t)(x', x'')$$

$$= \int_{\mathbb{R}^l} \int_{\mathbb{R}^k} (f_1 \otimes f_2)(y', y'') \left[\Phi_t(x' - y', x'' - y'') - P_{x', x'', t}(y', y'') \right] dy' dy'',$$

where $P_{x',x'',t}(y',y'')$ is the \widetilde{N} -th order Taylor polynomial of the function $(y',y'') \to \Phi_t(x'-y',x''-y'')$ expanded about $(\overline{x'},\overline{x''})$; here \widetilde{N} is the smallest integer with $\widetilde{N} \geq (k+l)(1/p-1)$.

Now, by the usual estimate of the remainder term in a Taylor expansion,

$$|\Phi_t(x'-y',x''-y'')-P_{x',x'',t}(y',y'')| \leq C \frac{|(y'-\overline{x'},y''-\overline{x''})|^{\widetilde{N}+1}}{t^{k+l+\widetilde{N}+1}},$$

and since $(y', y'') \in Q_1 \otimes Q_2$, $(x', x'') \in \{(Q_1 \otimes Q_2)^*\}^c$ and Φ is supported in B(0, 1), we have that $t > c|(x' - \overline{x'}, x'' - \overline{x''})|$. Hence

$$M_{\Phi}(f_1 \otimes f_2)(x',x'') \leq C \left(\frac{(2^{R_1}+2^{R_2})^{1/2}}{|(x'-\overline{x'},x''-\overline{x''})|} \right)^{k+l+\widetilde{N}+1} |Q_1 \otimes Q_2|^{-1/p},$$

and since $(k + l + \tilde{N} + 1)p > k + l$, we get (2.1) for $(x', x'') \in \{(Q_1 \otimes Q_2)^*\}^c$.

Finally, let $\{f_i\}$ be a collection of H^p atoms and $\{\lambda_i\}$ be a sequence of complex numbers with $\sum_i \lambda_i < \infty$. Set $f_1(x') = \sum_i \lambda_i f_i(x')$ and $f_2(x') = \sum_j \lambda_j f_j(x'')$. Since

p < 1, we have

$$\begin{split} \int_{x'} \int_{x''} [M_{\Phi} f(x', x'')]^p \, dx' \, dx'' \\ & \leq \sum_i |\lambda_i|^p \sum_j |\lambda_j|^p \int_{x'} \int_{x''} [M_{\Phi} (f_i \otimes f_j)(x', x'')]^p \, dx' \, dx'' \\ & \leq C \sum_i |\lambda_i|^p \sum_j |\lambda_j|^p \leq |A| |f_1||_{H^p(\mathbb{R}^k)}^p, \end{split}$$
 where $A = C \sum_j |\lambda_j|^p = C \sum_j |Q_j|.$

Now we proceed to the proof of the restriction theorem. The method of proof is an adaptation of the argument in Hong [2].

Proof of Theorem 1. Let $f_1 \in C_0^{\infty}(\mathbb{R}^k) \cap H^p(\mathbb{R}^k)$ and $f_{2,\epsilon} \in C_0^{\infty}(\mathbb{R}^l)$ with $\widehat{f_{2,\epsilon}}(\xi'') = \epsilon^{l(1/p-1)}\phi(\frac{\xi''-a}{\epsilon})$ and supp $\phi \subset B(0,1)$. Set $f_{\epsilon}(x',x'') = (f_1 \otimes f_{2,\epsilon})(x',x'')$.

Suppose that m is continuous. A straight forward calculation gives

$$T_m f_{\epsilon}(x', x'') = T_{m^{\epsilon}}(f_1 \otimes \epsilon^{l/p} \check{\phi})(x', \epsilon x'') e^{i \langle x'', a \rangle}$$

where $m^{\epsilon}(\xi',\xi'')=m(\xi',\epsilon\xi''+a)$. By (1) in Proposition 1 we have

$$(2.2) ||T_{m^{\epsilon}}(f_1 \otimes \check{\phi})||_{L^{p,\infty}} \le C_{\check{\phi}} ||m||_{\mathcal{M}} ||f_1||_{H^p}.$$

Applying the Lebesgue dominated convergence theorem, we see that $T_{m^{\epsilon}}(f_1 \otimes \check{\phi})$ converges to $(T_{m_a}f_1) \otimes \check{\phi}$ as $\epsilon \to 0$ where $m_a(\xi') = m(\xi', a)$. Thus, from Lemma 1 we have

$$(2.3) ||(T_{m_a}f_1) \otimes \check{\phi}||_{L^{p,\infty}} \leq C_{\check{\phi}} ||m||_{\mathcal{M}}||f_1||_{H^p}.$$

Suppose now that m is in the class L^{∞} . Let S denote the unit cube and set $\psi_{\delta}(\xi',\xi'')=\frac{1}{\delta^{k+l}}\chi_{S}(\frac{\xi'}{\delta},\frac{\xi''}{\delta})$. Now $\psi_{\delta}\in L^{1}$ and $m\in L^{\infty}$ yield that $\psi_{\delta}*m$ is continuous. Clearly,

$$T_{\psi_{\delta}*m}f_{\epsilon}(x',x'') = T_{\psi_{\delta}*m^{\epsilon}}(f_1 \otimes \epsilon^{l/p}\check{\phi})(x',\epsilon x'') e^{i\langle x'',a\rangle},$$

and from $||\psi_{\delta}||_{L^1} = 1$ and (2.2) we have

$$||T_{\psi_{\delta}*m^{\epsilon}}(f_{1} \otimes \check{\phi})||_{L^{p,\infty}} \leq ||\psi_{\delta}||_{L^{1}} ||T_{m^{\epsilon}}(f_{1} \otimes \check{\phi})||_{L^{p,\infty}}$$
$$\leq C_{\check{\phi}} ||m||_{\mathcal{M}} ||f_{1}||_{H^{p}}.$$

Likewise, $T_{\psi_{\delta}*m^{\epsilon}}(f_1 \otimes \check{\phi})$ converges to $(T_{\psi_{\delta}*m_a}f_1) \otimes \check{\phi}$ as $\epsilon \to 0$ by the Lebesgue dominated convergence theorem. Moreover, for fixed ξ'' the definition of Lebesgue

point ξ' is that

(2.4)
$$\lim_{\delta \to 0} \psi_{\delta} * m(\xi', \xi'') = \lim_{\delta \to 0} \frac{1}{\delta^{k+l}} \iint_{S_{\delta}} m(\xi' - \eta', \xi'' - \eta'') d\eta' d\eta''$$
$$= m(\xi', \xi''),$$

where S_{δ} is the cube of side length δ centered at the origin. By applying the Lebesgue dominated convergence theorem again and (2.4)

$$\lim_{\delta \to 0} T_{\psi_{\delta} * m_a}(f_1 \otimes \check{\phi}) = T_{m_a}(f_1 \otimes \check{\phi}),$$

and by (2.3)

$$||\lim_{\delta \to 0} T_{\psi_{\delta} * m_a}(f_1 \otimes \check{\phi})||_{L^{p,\infty}} \leq C_{\check{\phi}} \, ||m||_{\mathcal{M}} ||f_1||_{H^p}.$$

Therefore, m_a is contained in the class $\mathcal{M}(H^p, L^{p,\infty})(\mathbb{R}^k)$ and thus

$$||m_a||_{\mathcal{M}} \leq ||m||_{\mathcal{M}}.$$

This completes the proof.

Remark 3. In order to prove Corollary 1, We take $f_1 \in C_0^{\infty}(\mathbb{R}^k) \cap L^p_{rad}(\mathbb{R}^k)$ and $f_{2,\epsilon} \in C_0^{\infty}(\mathbb{R}^l)$ with

$$\widehat{f_{2,\epsilon}}(\xi'') = \epsilon^{l(1/p-1)} \frac{\phi(\frac{\xi''-a}{\epsilon})}{||\check{\phi}||_p}$$

and supp $\phi \subset B(0,1)$. The remaining part follows the similar argument as above.

REFERENCES

- S. Chanillo & B. Muckenhoupt: Weak type estimates for Bochner-Riesz spherical summation multipliers. Trans. Amer. Math. Soc. 294 (1986), no. 2, 693-703. MR 87f:42038
- 2. S. Hong: Weak type estimates for cone multipliers on H^p spaces, p < 1. Proc. Amer. Math. Soc. 128 (2000), no. 12, 3529-3539. MR 2001b:42011
- 3. _____: Some weak type estimates for cone multipliers. *Illinois J. Math.* 44 (2000), no. 3, 496-515. MR 2001e:42015
- M. Jodeit Jr.: A note on Fourier multipliers. Proc. Amer. Math. Soc. 27 (1971), 423-424. MR 42#4965
- Z. X. Liu: Multipliers on real Hardy spaces. Sci. China Ser. A 35 (1992), no. 1, 55-69.
 MR 93h:42014
- E. M. Stein: Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. Princeton University Press, Princeton, NJ, 1993.

 E. M. Stein, H. Taibleson & G. Weiss: Weak type estimates for maximal operators on certain H^p classes. Rend. Circ. Mat. Palermo (2) suppl. 1 (1981), 81-97. MR 83c:42017

Department of Mathematic, College of Natural Science, Chosun University, 375 Seoseok-dong, Dong-gu, Gwangju 501-759, Korea

Email address: skhong@mail.chosun.ac.kr