A Low-Power Area-Efficient Charge- Recycling Predecoder

저전력 소면적 전하재활용 프리디코더

  • 양병도 (한국과학기술원 전자전산학과) ;
  • 김이섭 (한국과학기술원 전자전산학과)
  • Published : 2004.07.01

Abstract

In this paper, a low power area efficient charge recycling predecoder (AE-CRPD) is proposed. The AE-CRPD is modified from the conventional charge recycling predecoder (CNV-CRPD). The AE-CRPD significantly reduces the area and power of the control circuits for the charge recycling operation. It saves 38% area and 8% power of the 2-to-4 CNV-CRPD. It also utilizes the property of the consecutive address increase in the memory. The AE-CRPDs are used for the frequently transited least significant bits and the conventional predecoders are used for the occasionally transited most significant bits. It saves 23% power of the 12-bit conventional predecoder.

본 논문에서는 저전력 소면적 전하재활용 프리디코더(area efficient charge recycling predecoder: AE-CRPD)를 제안하였다. AE-CRPD는 기존의 전하재활용 프리디코더(conventional charge recycling predecoder: CNV-CRPD)를 개선한 프리디코더이다. AE-CRPD는 전하재활용 동작을 위한 제어 회로의 면적과 전력소모를 크게 줄임으로써, 2-to-4 CNV-CRPD의 38%의 면적과 8%의 전력소모를 줄였다. 또한, 메모리에서 어드레스가 연속적으로 증가하는 특징을 이용하여, 빈번하게 변하는 LSBs(least significant bits)에는 AE-CRPD를 사용하고 가끔 변하는 MSBs(most significant bits)에는 기존의 프리디코더를 사용함으로써, 기존의 12 비트의 프리디코더의 전력소모를 23% 줄였다.

Keywords

References

  1. K. Itoh, K. Sasaki, and Y. Nakagome, 'Trends in low-power RAM circuit technologies,' Proc. IEEE, vol. 83, pp. 524-543, Apr. 1995 https://doi.org/10.1109/5.371965
  2. M. Margala, 'Low-power SRAM circuit design,' IEEE International Workshop on Memory Technology, Design and Testing, 1999, pp. 115-122 https://doi.org/10.1109/MTDT.1999.782692
  3. Edwin de Angel, Earl E. Swartzlander, Jr. 'Survey of Low Power Techniques for ROMs,' International Symposium on Low Power Electronics and Design, 1997, pp. 7-11 https://doi.org/10.1145/263272.263274
  4. K. W. Mai, T. Mori, B. S. Amrutur, R. Ho, B. Wilburn, M. A. Horowitz, I. Fukushi, T. Izawa, and S. Mitarai, 'Low-power SRAM Design Using Half-Swing Pulse-Mode Techniques,' IEEE Journal of Solid-State Circuits, vol. 33, no.11, pp. 1659-1671, Nov. 1998 https://doi.org/10.1109/4.726555
  5. B.-D. Yang and L,-S. Kim, 'A Low Power ROM using Charge Recycling and Charge Sharing,' IEEE International Solid-State Circuits Conference, 2002, pp. 108-109 https://doi.org/10.1109/ISSCC.2002.992962
  6. B.-D. Yang and L,-S. Kim, 'A Low Power ROM using Charge Recycling and Charge Sharing Techniques,' IEEE Journal of Solid-State Circuits, vol.38, no.4, pp. 641-653, Apr. 2003 https://doi.org/10.1109/JSSC.2003.809516
  7. B.-D. Yang and L,-S. Kim, 'A Low Power Charge Recycling ROM Architecture,' IEEE Transactions on Very Large Scale Integration Systems, Vol.11, No.4, pp. 590-600, Aug. 2003 https://doi.org/10.1109/TVLSI.2003.816138
  8. E. Macii, M. Pedram, and F. Somenzi, 'High level power modeling, es-timation and optimization,' IEEE Trans. on Comput. Aided Design, vol. 17, pp. 10611079, Nov. 1998 https://doi.org/10.1109/43.736181
  9. C. L. Su, C. Y. Tsui, and A. M. Despain, 'Saving power in the control path of embedded processors,' IEEE Design Test Comput., vol. 11, pp. 2430, 1994 https://doi.org/10.1109/54.329448
  10. N. Shibata, M. Watanabe, Y. Tanabe, 'A current-sensed high-speed and low-power first-in-first-out memory using a wordline/bitline-swapped dual-port SRAM cell,' IEEE Journal of Solid-State Circuits, Vol.37, No.6, pp. 735 - 750, June 2002 https://doi.org/10.1109/JSSC.2002.1004578