DOI QR코드

DOI QR Code

Hypoglycemic Effects of Crude Extracts of Prunus mume

오매 추출물의 혈당 강하 효과

  • Published : 2004.07.01

Abstract

Hypoglycemic effect of Prunus mume (PM) extract containing in Sangjinyangheul-tang and Hwangkeumtang, one of the diabetic herbal medicines, was determined by investigating insulin-like action, insulin sensitizing action and a-glucoamylase suppressing action. Insulin-like activity of 3T3-L1 fibroblast was not shown with the treatment of PM methanol extracts. However, treatment with 20% or 40% PM methanol extracts and differentiation inducers significantly decreased the differentiation of 3T3-L1 fibroblasts to adipocytes. A significant insulin sensitizing activity was observed in 3T3-L1 adipocytes, giving PM extracts (60%, 80% and 100%) with 1 ng/mL insulin to reach glucose uptake level increased by 50 ng/mL of insulin alone. In addition, 20% and 40% methanol extracts of PM suppressed the a-glucoamylase activity by 30% in vitro. However, there was no significant differences in the peak of serum glucose levels and area under the curve in Sprague Dawley male rats treated with PM ethanol extract or cellulose and 2 g maltose or dextrin/kg body weight. These data suggested that PM extracts contain effective insulin sensitizing compounds, lipid synthesis suppressing compounds and possibly a-glucoamylase suppressing compounds. Therefore, PM extracts are beneficial for anti-diabetic treatment in obese diabetic patients.

한의학에서 당뇨병 (소갈) 처방으로 사용되는 생진양혈탕과 황금탕 처방 성분 중의 하나인 오매의 포도당 이용에 대한 효과를 조사하기 위해서 오매를 70% 에탄올로 추출한 후 메탄올과 물을 섞은 용액으로 단계별로 XAD-4 column으로 분획하였다. 본 연구에서는 3T3-L1 섬유아세포와 지방세포에서 오매의 추출 분획물이 인슐린처럼 작용하는 인슐린성 물질이거나, 인슐린 작용을 향상시키는 인슐린 민감성 물질이거나, 또는 $\alpha$-glucoamylase 활성을 억제하는 물질로 작용하는 지 여부를 조사하였다. 오매 분획물은 인슐린성 물질로 작용하지 않았다. 반면에 20%나 40% 메탄올 분획층은 분화 유도 물질의 작용을 억제하여 3T3-L1 섬유아세포에서 지방세포로의 분화를 억제하였다. 한편 오매 분획층 중 60%, 80% 그리고 100% 메탄올 분획층은 3T3-L1 지방세포에서 인슐린 작용을 향상시키는 인슐린 민감성제로 작용하였다. in vitro 실험에서 20 그리고 40% 메탄올 분획층은 $\alpha$-glucoamylase의 활성을 저하시켜 말토스와 dextrin의 분해를 방해하였다. 그러나 in vivo에서는 오매 에탄올 추출물을 말토스나 dextrin을 투여하기 10분전에 투여하였을 때 최고 혈당 값과 area under the curve 값은 대조군과 차이가 없었다. 결론적으로 오매에는 지방 세포의 분화를 억제하는 물질과 인슐린 민감성을 향상시키는 물질이 함유하고 있으므로 비만을 동반한 당뇨병 및 인슐린 저항성의 치료와 예방에 중요한 역할을 할 것으로 사료된다.

Keywords

References

  1. DongEuBoGam Hur J.
  2. FEBS Lett v.514 Dual action of isoprenols from herbal medicines on both PPAR-gamma and PPAR-alpha in 3T3-L1 adipocytes and HepG2 hepatocytes Takahashi N.;Kawada T.;Goto T.;Yamamoto T.;Taimatsu A.;Matsui N.;Kimura K.;Saito M.;Hosokawa M.;Miysahita K.;Fusniki T. https://doi.org/10.1016/S0014-5793(02)02390-6
  3. Life Sci v.73 2'-Benzyloxychalcone derivative stimulate glucose uptake in 3T3-L1 adipocytes Kamei R.;Kadokura M.;Kitagawa Y.;Hazeki O.;Oikawa S. https://doi.org/10.1016/S0024-3205(03)00563-0
  4. Kr J Chinese Med v.23 Effect of insulin-like action and insulin signal transduction on 3T3-L1 adipocytes from coisis semen Ju Y.S.;Park S.;Ko B.S.
  5. Kr J Agri Chem Biotech v.45 Insulin sensitizing and insulin-like effects of water estracts from Kalopanax pictus NAKA fractions in 3T3-L1 adipocytes Ko B.S.;Kim H.K.;Park S.
  6. J Food Sci v.67 The effects of water extract of Polygonatum odoratum(Mill.) Druce on insulin resistance in 90% pancreatectomized rats Choi S.B.;Park S. https://doi.org/10.1111/j.1365-2621.2002.tb09556.x
  7. Biosci Biotech Biochem v.66 Steroidal glycoside from Polygonatum odoratum (Mill.) Druce improves insulin resistance but does not alter insulin secretion in 90% pancreatectomized rats Choi B.S.;Park S.A. https://doi.org/10.1271/bbb.66.2036
  8. J Chromatogr Sci v.40 Simultaneous and direct determination of oxalic acid, tartaric acid, malic acid, vitamin,C, citric acid, and succinic acid in Fructus mume by reversedphase high-perfromance liquid chromatography Zhanguo C.;Jiuru L.
  9. J Agric Food Chem v.51 Contribution of individual polyphenolics ot total antioxidant capacity of plums Chun O.K.;Kim D.O.;Moon H.Y.;Kang H.G.;Lee C.Y. https://doi.org/10.1021/jf0343579
  10. Zhongguo Zhong Yao Za Zhi v.20 Antitumor effect in vitro and immuno-response in vivo of Fructus mume Shen E.;Cheng T.;Qiao C.;Su Z.;Li C.
  11. Br J Nutr v.81 Insulin-releasing and insulin-like activity of the traditional antidiabetic plant Coriandurm sativum (coriander) Gray AM;Flatt PR https://doi.org/10.1017/S0007114599000392
  12. Methods Mol Med v.83 Analysis of insulin-stimulated glucose uptake in differentiated 3T3-L1 adipocytes Lakshmanan J.;Elmendorf J.S.;Ozcan S.
  13. Diabetes Obes Metab v.3 Effects of chronic treatment with acarbose on glucose and lipid metabolism in obese diabetic Wistar rats Carrascosa J.M;Molero J.C.;Fermin Y.;Martinez C.;Andres A.;Satrustegui J. https://doi.org/10.1046/j.1463-1326.2001.00102.x
  14. J Biol Chem v.278 Lipid rafts/caveolae are essential for insulin-like growth factor-1 receptor signaling during 3T3-L1 preadipocyte differentiation induction Huo H.;Guo X.;Hong S.;Jiang M.;Liu X.;Liao K. https://doi.org/10.1074/jbc.M211785200
  15. Endocrinology v.143 Gene expression profile of adipocyte differentiation and its regulation by peroxisome proliferation-activated receptor-gamma agonists Gerhold D.L.;Liu F.;Jiang G.;Li Z.;Xu J.;Lu M.;Sachs J.R.;Bagchi A.;Fridman A.;Holder D.J.;Doebber T.W.;Berger J.;Elbrecht A.;Moller D.E.;Zhang B.B. https://doi.org/10.1210/en.143.6.2106
  16. Mol Cell Biol v.21 Essential role of insulin receptor substrate 1 (IRS-1) and IRS-2 in adipocyte differentiation Miki H.;Yamauchi T.;Suzuki R.;Komeda K.;Tsuchiada A.;Kubota N.;Terauchi Y.;Kamon J.;Kaburagi Y.;Matsui J.;Akanuma Y.;Nagai R.;Kimura S.;Tobe K.;Kadowaki T. https://doi.org/10.1128/MCB.21.7.2521-2532.2001
  17. J Cell Sci v.115 Reduced IRS-2 and GLUT4 expression in PPAR-gamma 2 -induced adipocytes derived from C/EBP-beta and C/EBP-delta-dificient mouse embryonic fibroblasts Yamamoto H.;Kurebayashi S.;Hirose T.;Kouhara H.;Kasayama S. https://doi.org/10.1242/jcs.00044
  18. J Traditional Med v.13 Insulin like action of trans-10-hydroxy-2-decanoic acid and its related substance Kameda K.;Chikaki M.;Morimoto C.;Jiang M.;Okuda H.
  19. Diabetes v.51 Regulation of glucose transport and insulin signaling by troglitazone or metformin in adipose tissue of type 2 diabetic subjects Ciaraldi T.P.;Kong A.P.;Chu N.V.;Kim D.D.;Baxi S.;Loviscach M.;Plodkowski R.;Reitz R.;Caufield M.;Mudaliar S.;Henry R.R. https://doi.org/10.2337/diabetes.51.1.30
  20. Diabetes Care v.15 Pathogenesis of NIDDM: A balanced overview DeFronzo R.A.;Bonadonna R.C.;Ferrannini E. https://doi.org/10.2337/diacare.15.3.318
  21. Biol Pharm Bull v.22 Isolation and antihyperglycemic activity of bakuchiol from Otholobium pubsecens (Fabaceae), a preuvian modicinal plant used for the treatment of diabetes Krenisky J.M.;Luo J.;Carney J.R. https://doi.org/10.1248/bpb.22.1137
  22. Gaxiong Yi Xue Ke Xue Za Zhi v.16 Effect of crude drugs on glucose uptake in 3T3-L1 adipocyte Hong S.J.;Fong J.C.;Hwang J.H.
  23. Clin Ther v.19 Acarbose: a review of US clinical experience Coniff R.;Krol A. https://doi.org/10.1016/S0149-2918(97)80069-0
  24. Diabetes Metab v.24 Clinical efficacy of acarbose in diabetes mellitus: a critical review of controlled trials Scheen A.J.
  25. Drugs v.35 Acarbose, A preliminary review of its pharmacodynamicand pharmacokinetic properties, and therapeutic potential Clissold S.P.;Edwards C.
  26. Am J Gastroenterol v.84 Enteroglucagon release in disaccharide malabsorption induced by intestinal alpha-glucosidase inhibition Hayakawa T.;Kondo T.;Okumura N.;Nagai K.;Shibata T.;Kitagawa M.
  27. Med Klin v.93 Continuous blood glucose monitoring: the acute effect of acarbose on blood glucose variations Hermann B.L.;Schatz H.;Pfeiffer A. https://doi.org/10.1007/BF03044876

Cited by

  1. Estimation of Daily per Capita Intake of Total Phenolics, Total Flavonoids, and Antioxidant Capacities from Commercial Products of Japanese Apricot (Prunus mume) in the Korean Diet, Based on the Korea National Health and Nutrition Examination Survey in 2010 vol.46, pp.2, 2014, https://doi.org/10.9721/KJFST.2014.46.2.237
  2. Antioxidant and Cell Activity Using Extracts of Mume Fructus vol.19, pp.5, 2011, https://doi.org/10.7783/KJMCS.2011.19.5.388
  3. Antimicrobial effect ofPrunus mumeextracts against cariogenic bacteria vol.41, pp.1, 2017, https://doi.org/10.11149/jkaoh.2017.41.1.65
  4. Non-thermal treatment of Prunus mume fruit and quality characteristics of the dehydrated product vol.21, pp.5, 2014, https://doi.org/10.11002/kjfp.2014.21.5.652
  5. Antitumor and Free Radical-Scavenging Activities of Various Extract Fractions of Fruits and Leaves from Prunus mume vol.44, pp.8, 2015, https://doi.org/10.3746/jkfn.2015.44.8.1137
  6. Effects of Mume Fructus on the Rat Hypothyroidism Induced by PTU(6-n-propyl-2-thiouracil) vol.30, pp.4, 2015, https://doi.org/10.6116/kjh.2015.30.4.109.
  7. 기와층버섯 추출물의 항비만활성, 항암활성 및 단회경구독성시험 vol.23, pp.3, 2007, https://doi.org/10.5487/tr.2007.23.3.253
  8. 울릉매실 분말 첨가 쿠키의 품질 특성 vol.48, pp.2, 2004, https://doi.org/10.6115/khea.2010.48.2.113